
1 INTRODUCTION 

Due to the train wheelset has a tamper, when the ve-
hicle rolls along the rail and its speed reaches a criti-
cal value, the external self-excitation frequency is 
close to the natural frequency of the train system and 
that will contribute to resonance. At this time, cou-
pling forward motion of locomotive wheelset with 
certain taper will be traversing while shaking around 
the center line of the track is hunting motion [1, 2]. 
Hunting instability is a key factor to affect the ride 
comfort, and possesses safety relevance even leads 
to derailment [3]. Souza [4] researched hunting in-
stability critical speed by using describing function 
method. True [5] proposed a calculation method of 
the non-linear critical velocity. But those studies 
show that the practical critical speed of hunting in-
stability is significantly differ from the theoretical 
results because of the track irregularity and yaw 
damper failures, etc. [6, 7, 8]. Besides, different cal-
culation methods lead to different results of critical 
speed, and hunting bifurcation is also affects the ve-
hicle stability assessment [9]. Therefore, just using 
the theoretical analysis method to assess the hunting 
stability exists severe deficiencies and an on-line 
monitoring method need to be established urgently. 

In order to monitor the hunting stability of high-
speed train, Liu et al. [10] built real-time monitoring 
method of bogie lateral stability by using the Gauss 
mixture model, Sun ea al. [11] used multiple classi-

fication and SVM method to recognize the bogie lat-
eral instability state, in engineering applications, 
China installed the bogie instability detection device 
(BIDS) of Japan Kawasaki Heavy industries in 
CRH2 to monitor the vibration state of bogie frame. 
In those studies and applications, hunting Instability 
evaluation criteria is as follows: the peak value of 
bogie lateral vibration acceleration reaches or ex-
ceeds the limit of 8m/s2 ~ 10m/s2 (adapting with the 
design of the steering rack) for more than  6 times 
( including 6), it is identified that hunting instability 
[12]. But in actual running process, due to the small 
displacement perturbation of wheelset, the wheel/rail 
equivalent taper and creep force decrease easily and 
that lead to small hunting vibration, at this time the 
peak value of frame lateral acceleration did not 
reach or exceed the safety limit value of hunting mo-
tion [13,14]. Small amplitude hunting instability 
state is a symptom of intensive hunting instability 
and which not only affects the ride comfort bus also 
easily leads to wheel/rail fatigue damage, while ex-
isting evaluation methods can not realize the moni-
toring of this state. To achieve high-speed train run-
ning safety, Small hunting state of high-speed train 
need to be monitored. Meanwhile, it also can pro-
vide a method to prevent intensive hunting instabil-
ity by monitoring small hunting sate. 

Firstly, when the train runs at a high speed, the 
vibration signal is usually mixed with the shock sig-
nal, because the ensemble empirical mode decompo-
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sition (EEMD) has the function of adaptive and sup-
pression of mode mixing [15], it has an unique ad-
vantage in processing of this kind of signal, but there 
remains some shortcomings such as large calculation, 
time-consuming, modal splitting etc., while the mod-
ified ensemble empirical mode decomposition 
(MEEMD) can solve those problems [16, 17]. Sec-
ondly, the time-frequency distribution is highly con-
centrated when the train hunting instability is occur, 
Shannon entropy can effectively reflect the degree of 
signal concentration of time-frequency distribution. 
Finally, compared with the traditional support vector 
machine (SVM), least squares support vector ma-
chine (LSSVM) is a simplified and fast calculation 
algorithm [18]. Based on above three reasons, this 
paper combines the MEEMD, Shannon entropy and 
LSSVM to identify the small hunting state of high-
speed train, the experimental result shows that the 
proposed method is efficient. 

2 REVIEW OF MEEMD AND SHANNON 
ENTROPY 

2.1 Modified Ensemble Empirical Mode 
Decomposition (MEEMD) 

Empirical mode decomposition (EMD) method is 
widely used in processing non-stationary signals, but 
there remains many disadvantages such as modal 
mixing, when the train runs at a high speed, the vi-
bration signal is often mixed with shock signal, us-
ing EMD to process the signal will lead to modal 
mixing. To solve the problem, Huang proposed an 
improved method, which is adding white noise to the 
original signal and that decomposed by EMD, name-
ly EEMD, this method can effectively inhibit the 
modal mixing [15]. But the modal mixing problem 
cannot be decomposed completely if the amplitude 
of the added white noise is too low, while it will in-
crease the average amount of calculation if the am-
plitude is too high, and which will cause the high 
frequency component of the signal is hard to be de-
composed. Besides, the intrinsic mode functions 
(IMFs) decomposed by EEMD may occur mode 
splitting problem. In view of this, Zhen et al. [16] 
proposed a modified EEMD algorithm, which can 
restrain the mode mixing and solve the mode split-
ting, and can improve the efficiency of the algorithm, 
namely MEEMD. 

The MEEMD decomposition steps for non-
stationary signals are as follows: 

1) Adding the white noise signals ( )in t  and 

( )in t  to the original signal ( )x t  respectively, as 
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Where ia  is the amplitude of the white noise 

signal, and ( )in t  is the white noise signal. 

2) In the following, ( )ix t  and ( )ix t  are de-

composed by EMD respectively, as 
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Where ( )ic t  and ( )ic t  are IMFs decomposed 

by EMD respectively. 
3) Calculating the average of ( )ic t  and ( )ic t , 

and thus eliminating the residual white noise as 
much as possible.. 

c ( ) 0.5( ( ) ( ))i i it x t x t                      (3) 

4) Because c ( )i t  is not a standard IMF, and 
there may be some problems such as mode splitting, 
which can be called as the pre intrinsic mode func-
tion (Pre-IMF), the EMD decomposition of this 
component as follow: 
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EMD
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Where ( )ib t  is the first standard IMF of c ( )i t , 

and ( )kd t  is the residue of the Pro-IMF decomposi-

tion, ( )kh t  is the k th Pre-IMF, ( )kd t  is the first 

component of ( )kh t  decomposition and 
2,3,4,...,k m . 

5) As a result, the signal can be expressed as 
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Where ( )id t  represents the i th IMF, and ( )r t  
is the residue of the signal decomposition.  

2.2 Shannon entropy 

Shannon entropy is a kind of commonly used infor-
mation entropy, which can be used as the criteria to 
judge the uncertainty of a signal. To be specific, a 
signal can get a larger Shannon entropy value if it is 
well-regulated. Under normal running state, vibra-
tion signals are randomly distributed in the whole 
frequency range and the information in the signal is 
uncertain, so that the value of Shannon entropy is 
small. However, when faults occur, the certainty of 
the signal in specific frequency band will increase, 
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so that the value of Shannon entropy in that frequen-
cy band becomes relatively large. Therefore, Shan-
non entropy of the IMFs can reflect the quantity and 
distribution of the information in vibration signals so 
well that it can be utilized to characterize the proper-
ties of faults [18]. The Shannon entropy of the in-
stantaneous amplitude of IMFs is defined as: 

2
2
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n

i i i
t

S d t d t
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3 A NEW DIAGNOSIS METHOD WHICH 
COMBINES MEEMD, SHANNON ENTROPY 
AND LSSVM 

High speed train bogie hunting instability occurs 
when it is in the resonance state, the frequency dis-
tribution is more centralized than that of normal 
running. Vibration signal is decomposed by 
MEEMD, the envelopes and their means are used to 
generate a collection of intrinsic mode functions 
(IMFs). If the IMFs contain hunting faults feature 
information, the time-frequency distribution will be 
more centralized, and its Shannon entropy value is 
smaller. On the contrary, when the components of 
IMFs contain less fault feature information, the 
time-frequency distribution is less centralized, and 
its Shannon entropy value is lager. Therefore, this 
paper first used MEEMD to decompose the normal, 
small amplitude hunting and large amplitude hunting 
signals of the high-speed bogie frame. Then, using 
the HT to analyze the time-frequency concentration, 
and calculating the Shannon entropy value of each 
IMF and constructing the feature matrix. Finally, us-
ing Shannon feature to train LSSVM and test the 
recognition rate of the different three states.  

The steps of feature extraction are as follows: 
1) Using MEEMD to decompose the healthy, 

small hunting and large hunting signals respectively 
and getting the IMFs components. 

2) Obtaining the Shannon entropy value of each 
IMFs, because MEEMD is a principal component 
analysis method, The main information of the signal 
is included in the first several IMFs components, ac-
cording to the actual situation, the first 6 IMFs com-
ponents was gotten in this paper, 1, 6inH i  , n is 
the number of samples. 

3) Constructing a feature vector of the 6 Shannon 
entropy value. 

i1 2[ , ,..., ]i inV H H H  

4 EXPERIMENTAL ANALYSIS 

4.1 Data acquisition 

The bogie frame acceleration date is acquired in a 
field test between two cities from Beijing to Hang-
zhou in China. The CRTSⅡballastless track and 
seamless rail are adopted in the whole line, running 
speed of the train is 320~350km/h and sampling fre-
quency is 2500Hz. The resampling frequency is set 
to 250Hz according to the Shannon sampling theo-
rem due to the frequency range of hunting is 
2~12.07Hz. Band-pass filter the signal af-
ter resampling for 2~12.07Hz, and the time domain 
waveform of the lateral acceleration after filtering is 
shown in Fig. 1. 
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Fig. 1 Time-speed and time- lateral acceleration of bogie frame 

 
According to the literature [4], the healthy driving 

state is that the amplitude of the lateral acceleration 
signal of frame is not more than 2m/s2, the small 
hunting state is the part of not reaching or exceeding 
the safety limit of transverse acceleration signal of 
framework when the wheel has small displacement 
perturbation. The hunting with large amplitude is 
that the part of peak meeting or exceeding 8~10 
m/s2 more than 6 times (including 6) according to 
China's railway passenger traffic safety monitoring 
standard. If high-speed train bogie whether there 
will be a failure is judged timely according to identi-
fy the features of small hunting signal that is very 
important to ensure the running safety of high speed 
train. 

4.2 Signal MEEMD decomposition 

The frequency characteristics of the bogie vibration 
signals are varied greatly in healthy, small hunting 
and large hunting states, utilizing the MEEMD de-
composed IMFs components can reflect different 
time-frequency concentration and the Shannon en-
tropy feature can effectively reveal the difference 
between the three states. MEEMD decomposition 
results in three states are shown in fig. 2. The analy-
sis shows that the frequency of each IMF component 
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is reduced, and the MEEMD decomposition results 
of the same scale of the three states are different. 
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(a) Healthy 
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(b) Small hunting 
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(c) large hunting 
 
Fig. 2 MEEMD results of vibration signals of various States 

4.3 Time-frequency concentration analysis of 
MEEMD-HT 

In order to show the healthy, small hunting and large 
hunting frequency concentration, using MEEMD to 
decompose the vibration signals of the three states, 
and utilizing HT to get the time-frequency-energy 
distribution spectrum, as shown in fig.3. Comparing 
with EEMD-HT method, results shows that the bo-
gie speed at 330Km/h ~ 350Km/h, the healthy run-
ning frequency distribute in 0 ~ 15Hz, and the ener-
gy distribution is mainly concentrated in the range of 
4 ~ 12Hz, this is because it is in a state of random 
vibration when the train under healthy running state, 
which lead to the frequency and energy distribution 
is disperse. Under the small hunting oscillation, fre-
quency and energy distribution is more concentrated 
that that of healthy state, the frequency distribution 
mainly in 0 ~ 10Hz and the energy distribution is 
mainly concentrated in the range of 5 ~ 10Hz, time-
frequency aggregation is between healthy and large 
hunting state. Under the large hunting state, fre-
quency, and the energy distribution is highly con-
centrated, frequency and energy distribution around 
5Hz. This is due to the bogie is in the state of reso-
nance. MEEMD-HT spectrum can clearly express 
the distribute details of energy variety with time and 
frequency and can clearly show the signal character-
istics. The EEMD-HT spectrum, meanwhile, lost 
many frequency components. In contrast, MEEMD-
HT can restrain the mode mixing, solving the modal 
splitting and is superior to the traditional EEMD-HT 
method. 
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(b) Small hunting 
 

 
(c) large hunting 
 
Fig. 3 MEEMD-HT and EEMD-HT results of vibration signals 
of various States 

4.4 MEEMD Shannon entropy feature extraction 

From 3.2 and 3.3, the MEEMD-HT spectrums show 
that the IMFs Shannon entropy of the MEEMD can 
effectively reflect time-frequency concentration of 
hunting information, and introducing Sample entro-
py feature as a contrast. Calculating IMFs Shannon 
entropy and Sample entropy after getting a serious 
IMFs decomposed by MEEMD, as shown in tab. 1. 
Only 2 samples results are given due to space con-
straints. The analysis shows that the Shannon entro-
py features of different states are vary obviously, 
and the same state of the distribution is similar. 

4.5 Training LSSVM and the classification effect 

The healthy, small hunting and large hunting of bo-
gie frame signals are represented by t=1, t=0 and t=-
1 respectively. Extracting Shannon entropy feature 
and Sample entropy value as the input features of 
LSSVM respectively and using 90 groups as training 
samples (30 healthy groups, 30 small hunting groups 
and 30 large hunting groups). After the completion 
of the training, using 90 groups (30 healthy groups, 
30 small hunting groups and 30 large hunting groups) 
as the test samples, comparing with MEEMD-SVM, 
EEMD-SVM and EEMD-LSSVM recognition, as 
shown is tab. 2. By comparison, the Shannon entro-
py as the input of LSSVM is better than the Sample 
entropy, and the recognition rate is 97.78%. 
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Tab.1 IMFs entropy features of healthy and hunting instability states 

Running states Features No.
Feature vectors

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

Healthy 
Shannon entropy 1 0.7888 0.7756 0.8265 0.8188 0.9178 0.9969

2 0.7994 0.7670 0.8325 0.8282 0.9299 1 

Sample entropy 1 0.9141 0.8122 0.8962 0.4410 0.1339 0.0020
2 0.9064 0.7875 0.5829 0.4699 0.1690 0.0004

Small hunting 
Shannon entropy 1 0.7056 0.7063 0.6856 0.5635 0.8326 0.8545

2 0.6988 0.7250 0.6325 0.5243 0.8383 0.8315

Sample entropy 1 0.9061 0.8314 0.8653 0.4890 0.1116 0.0038
2 0.8730 0.7225 0.7634 0.4502 0.0932 0.0065

Large hunting 
Shannon entropy 1 0.6175 0.7901 0.4950 0.6469 0.8081 0.9561

2 0.6235 0.7438 0.5208 0.6282 0.7948 0.9561

Sample entropy 1 0.6196 0.5715 0.3659 0.3025 0.0054 0.0037
2 0.7495 0.5660 0.3854 0.2946 0.0528 0.0036

 
Tab 2.Recognition results of LSSVM for healthy and hunting 
instability states of various features 

Features 
Output results

Recognition rates 
1 0 -1 

Shannon entropy 30 28 30 97.78% 
Sample entropy 28 26 25 87.78% 

 
 
Tab. 3.Accuracy and computation time of different diagnose 
methods 
Diagnosis methods Recognition rates Computation time(s)
MEEMD-LSSVM 97.78% 2.1102 
MEEMD-SVM 90.00% 3.9528 
EEMD-LSSVM 83.33% 7.5436 
EEMD-SVM 76.67% 9.4202 

 
Calculating the computation time of the MEEMD 

Shannon entropy -LSSVM diagnosis method, com-
paring with MEEMD-SVM,, EEMD-SVM and 
EEMD-LSSVM. as shown in tab. 3. Running soft-
ware: matlab7.11 R2010b, laptops, CPU: Intel Core 
i3-380M, 2.53GHz, memory: 2GB. Results show 
that the MEEMD Shannon entropy -LSSVM diag-
nosis method of high-speed train hunting instability 
is the best, with highest recognition rates and short-
est computational time. 

5 SUMMARY 

Aiming at the small hunting state of high-speed train, 
a new methodology which combines modified en-
semble empirical mode decomposition (MEEMD), 
Shannon entropy features and least squares support 
vector machine (LSSVM)was presented in this paper 
to diagnose hunting motion state of high-speed train. 
Conclusions are as follows. 

(1)Time-frequency distribution of bogie frame vi-
bration signal is dispersed because the train is under 
the random state. Under small hunting oscillation, 
the self-excited frequency close to the hunting fre-
quency, time-frequency distribution is relatively 
concentrated. The time-frequency distribution is 
highly concentrated when the train is under the large 
hunting state because it is in the state of resonance. 

(2)MEEMD Shannon entropy -LSSVM method 
can identify the bogie healthy running, small hunting 
and large hunting states effectively, the recognition 
result is superior to that of sample entropy, the accu-
rate rate is higher than the MEEMD-SVM, EEMD-
LSSVM, and EEMD-SVM method, and the compu-
ting time is shortest. 
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