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Abstract: With the fact that the microstructure of light-weight cellular materials having a significant 

impact on its macro performance, the material or structure with special macroscopic properties can 

be obtained through the topological design of the microstructure of cellular material. Based on this 

idea, this paper focuses on determining the optimal material layout in the periodic microstructural 

unit cell. The effective elastic properties of the periodic microstructure are obtained by using an 

efficient energy-based homogenization method. The optimization model is formulated as finding a 

microstructural topology with extreme properties or desired properties under the constraints of a 

prescribed volume fractions based on topology optimization technique. In this framework, the SIMP 

interpolation combined with OC algorithm is utilized to solve the problem. Several typical numerical 

examples are presented to demonstrate the favorable characteristics of the proposed method in the 

optimization design of material microstructures. Some interesting topological configuration have 

been found for guiding the cellular material design. 

Keyword: Topology optimization；energy-based homogenization；cellular material；microstructure 

design；SIMP interpolation 

1. Introduction 

The development of modern engineering technology has increasingly high requirements to the 

performance of materials, and new materials and structures with special mechanical properties are 

needed. Light-weight cellular materials have been widely concerned due to the various advanced 

physical，mechanical and thermal properties far more beyond solid materials[1]. They are usually 

characterized by assemblies of a number of periodical microstructures, consisting of conventional 

materials, such as metals or plastics. Thus the layout of the unit cell of microstructure has an utmost 

impact on the properties of cellular materials. Therefore, it is of great interest to apply topology 

optimization methods to achieve the optimal material layout of the unit cell of periodic 

microstructure, which has the desired properties or even extreme properties[2]. 

In the last decades, topology optimization has been expanding as a powerful computational 

design tool for structures and materials both in academic research and industrial applications[3]. 

Essentially, topology optimization is a numerical iterative method that distributes a given amount of 

material inside a prescribed design domain to seek the optimal material layout, such that the 

objective function is optimized subject to a set of constraints[2]. So far, various methods have been 

developed for topology optimization, e.g. the homogenization method[4,5], the evolutionary 

structural optimization method(ESO)[6,7]and bi-directional evolutionary structural optimization 

(BESO)[8-9], the element density SIMP method[10,11], the nodal density SIMP method[12,13], and 

the level set based method(LSM)[14,15]. Amongst a number of applications of topology 

optimization, one of the most promising applications may be the optimization design of material 

microstructures [2]. 
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For instance, Sigmund[16, 17]firstly employed the topology optimization method to design 

periodic microstructures with prescribed properties based on the inverse homogenization method. 

Since then, topology optimization has showcased the potential in the design of various materials. 

Such as, Gibiansky and Neves et al[18,19]designed multiphase composites with extreme elastic 

properties subject to the constraint of volume fraction of materials. Sigmund et al [20,21]obtained the 

composites with zero or negative thermal expansion coefficients using a numerical topology 

optimization method. Huang and Andreassen et al[22,23]designed the periodic composite 

microstructure with optimal viscoelastic characteristics. Grimberg and Zhou et al. [24,25]have 

extended a level set procedure to design the electromagnetic meta-materials. Luo and Andreassen et 

al[2,26]proposed a new topological optimization method to design a type of mechanical 

metamaterials with negative Poisson’s(auxetic materials). Wang[27]obtained the material 

microstructures with prescribed nonlinear properties using topology optimization under finite 

deformation. Zhou and Li[28,29]have investigated the computational design of composite 

microstructural for extremal conductivity property or graded mechanical property using the SIMP 

method. 

However, the method mentioned above are mainly focused on obtaining the effective properties 

of the periodic microstructures through the numerical homogenization method, and then the 

optimization problem for seeking the optimal microstructure of the unit cell with the different 

properties was realized. Compared with the homogenization method, the energy-based 

homogenization method is of higher computational efficiency and more simplified programming. 

Zhang et al. [30-31] and Xia et al. [32] have investigated the design of material microstructures with 

extreme elastic properties using energy-based homogenization method, but for the design of material 

microstructures with prescribed properties haven’t too much involved. More importantly, because 

there is no unique solution for material design, the optimization iterative algorithm is hard to 

converge, and the optimization parameters are difficult to be selected in the design of material 

microstructures. All of the mentioned problems above have not been discussed too much in these 

literatures. 

In this paper, the effective elastic properties of the periodic microstructure are evaluated by 

using an efficient energy-based homogenization method. The optimization problem is formulated as 

achieving an optimal microstructure with extreme properties or desired properties under the 

constraint of a prescribed volume fractions based on topology optimization technique. The SIMP 

interpolation combined with OC algorithm is utilized to solve the problem. What’s more, at the 

beginning of the optimization iteration, an appropriate number of holes are to put in the initial 

configuration, which could increase the inhomogeneity of the design domain and have certain 

guidance on the optimal microstructure configuration at the same time, so as to solve the problem of 

multiple solutions during the material designing procedure. Thus the oscillation of the objective 

function could be avoided in the iterative process, and the sensitivity of optimization algorithm on 

the optimization parameters could be reduced, and the computational efficiency would be improved 

to a great extent. 

2. The energy-based homogenization and sensitivity analysis 

2.1 The equivalent method of effective elastic properties based on the energy-based 

homogenization 

Based on the homogenization theory, the effective elastic tensor 
H

ijklD of the periodic material 

microstructures can be formulated as the following symmetrical form[16] 

         0 * 0 *1 ij ij kl klH

ijkl pq pq pqrs rs rs
Y

D D dY
Y

                        (1) 

Where 
0

pq  is the macroscopic strain fields, consisting of three components (e.g. horizontal unit 



strain, vertical unit strain and shear unit strain), while 
*

pq  is the locally varying strain fields.  

In order to utilize the more mature topology optimization technology in the field of structural 

optimization, (1) can be written in the form of an equivalent form (2) based on the element mutual 

energies[16] 
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In finite element analysis, the unit cell of microstructure is discretized into N finite elements, 

and（2）is written as following approximately 
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Where  ijkl

eq  is the element mutual energy, and  A kl

eu are the element displacement fields 

corresponding to the macroscopic strain fields  0 kl
 , and ek  is the element stiffness matrix. In the 

two-dimensional plane stress problem, we note that11 1 , 22 2 , 12 3 , allowing to write (3) 

in an expanded form (we assume the materials are isotropic) 
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Fig.1 Homogenization of 2D microstructure.  

(a) microstructure, (b) equivalent homogenized medium. 

The microscopic inhomogeneous structure namely the periodic microstructure shown in Fig. 1(a) 

can be replaced by an equivalent homogeneous medium with the same volume at the macroscopic 

level as shown in Fig. 1(b). 

The stress and the strain tensors of the homogeneous medium and the average stress and strain 

of the microstructure satisfy the following conditions[31] 
1

d
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                             (5) 

The stress and the strain tensors of the homogeneous medium also follow the Hooke's law 

 HD                                 (6) 

Where HD is the effective elastic tensor of the material microstructure. 



According to (4)，（6）can be further formulated as  
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Where 11 , 22  denotes the averaged stress in the horizontal and vertical direction 

respectively, and 11 , 22  denotes the averaged strain in corresponding two directions, and 12 , 

12  denotes the averaged shear stress and strain. 

Besides, regardless of the influence of temperature, the strain energies stored in microstructure 

and the homogeneous medium has to be equal  
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According to Eqs.(7) and (8),the corresponding unit strain energy of the microstructure can be 

calculated under the specific boundary conditions, such as specific strain fields and periodic 

boundary conditions. And then, the relationship between the effective elastic modulus and the 

corresponding unit strain energy of the microstructure can be derived, thus the energy expression of 

the effective elastic modulus of the microstructure can be obtained. As shown in Fig. 1, the unit 

volume microstructure under plane stress state is set to be an example (a and b is selected as a=b=1), 

the effective elastic properties can be calculated by the prescribed displacement boundary conditions 

as shown in Table 1 (set u=v=a/2=0.5 in the Table 1). 

Table 1 Prescribed boundary conditions and corresponding strain energies of microstructures 

Boundary 

condition 

Strain energies of 

microstructure 
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According to Table 1, the effective elastic tensor DH can be expressed as 
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2.2 Sensitivity analysis of the effective elastic properties 

It is critical to acquire gradient information of the design variables to guide the optimal algorithm 



to search for an optimum solution efficiently during the iteration process, which is an important step 

in topology optimization. In this regard, topological sensitivity is frequently defined as the derivative 

with respect to design variable, which in the density-based finite element framework is the relative 

density of element. In order to derive the sensitivities with respect to the elastic properties of the 

macro-materials, its Young’s modulus can be interpolated as the function of the element density as 

0 min( ) , 0 1p

e e e eE E x x E x x    
                        

 (10) 

Where eE  is the elastic modulus of element e with density interpolation. ex  designates the 

relative density of the element e, which takes values between 0 and 1. p is a penalization factor 

(typically p = 3-5) introduced to ensure the density distribution closer towards the black-and-white 

solutions. 0E  denotes the elastic modulus of solid material. minx is a small value of the density of 

element, e.g. 0.001, to avoid the singularity of the stiffness matrix. 

As shown in Table 1, the strain energy of microstructure under corresponding boundary 

condition n is therefore stated as  
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Based on Eq.(11), the gradient of strain energy microstructure respect to design variable ix can 

be expressed as follows 
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Where 
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 n

U  is the nodal displacement vector on the boundary of the microstructure, 
 n

U  is the inner 

nodal displacement vector. 
 n

F  is the nodal force vector on the boundary, 
 n

F  is the inner nodal 

force vector inside the microstructure. 

According to Eqs. (9) and (12), the sensitivity of effective elastic tensor can be obtained. 
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3. Topology optimization model of the material microstructures 

3.1 Topology optimization model with extreme elastic properties 

With regard to topology optimization of the material microstructure with the extreme properties, 

the design of the microstructural unit cell with the maximum shear modulus or bulk modulus are the 

most representative examples. Based on the SIMP interpolation model and the design variable of 

elemental relative density, the optimization problem can be formulated as properly distributing the 

solid material in the unit cell of the microstructure subject to a given material volume so that the 

effective shear or bulk modulus approaches its possible maximum value. Thus, the optimization 

problem can be mathematically stated as follows 
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Where ex  is elemental relative density, i.e. design variable, and G、K is the shear and bulk 

modulus of microstructural unit cell respectively, i.e. optimization objective. ( )V x  is the volume of 

the optimized structure and 0V  is the given total structural volume. f  is the allowable material 

volume fraction of the unit cell. 

According to Eq.(9), the shear modulus G and the bulk modulus K of the microstructural unit 

cell can be expressed as 
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According to Eq.(14), the sensitivity of bulk modulus 
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3.2 Topology optimization model with prescribed elastic properties 

With regard to topology optimization of the microstructural unit cell with the prescribed 

properties, the design of the microstructural unit cell with the prescribed Poisson’s ratio are the most 

representative examples. 

For simplicity but without losing any generality, this paper focus on the design of 

microstructural unit cell subject to the plane stress condition, thus the effective elastic tensor of the 

microstructural unit cell can be written as 
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For convenience, the factor of the matrix is set as an constant 2/ 1E   . So, the effective 

Poisson’s ratio of the microstructural unit cell can be obtain from the Eq.(20), and be expressed as 

follow 
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The Poisson's ratio   of the material is within the interval 1 1    for plane stress 

problems in the classic theory of elasticity[2]. In order to fully demonstrate the effectiveness of the 

proposed method, the Poisson's ratio   is set to -1，-0.5，-0.3，0，0.3，0.5 and 1 respectively as the 

optimization objective. 

According to Eq.(21), the optimal microstructure configuration with the prescribed Poisson's 

ratio   can be obtain through solving the optimization model of the microstructure with prescribed 

properties(i.e. 11

HD  and 12

HD  are prescribed).The properties of 11 22 1H HD D   and 

 HH

2112 DD are prescribed in this paper, so as to obtain the optimal microstructure with the 

prescribed effective elastic tensor as follows 
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In order to generate optimal microstructural configuration with the prescribed properties, the 

objective function is defined as the minimization of the sum of squared difference between HD and 

the prescribed elastic tensor *HD . Thus, the optimization problem can be formulated as follows 
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Where kl  is the weighting factor associated with corresponding component of the effective 

elastic tensor,  0.01 0.01 1l  in this paper. ( )V x  is the volume of the optimized structure and 

0V  is the given total structural volume. f  is the allowable material volume fraction of the unit cell. 

According to Eq.(14), the sensitivity of the objective function 
ex


 with respect to the design 

variable ex  can be expressed as 
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4. Numerical implementation 

In this paper, the periodic microstructural unit cell with extreme property or prescribed property 

can be obtained based on topology optimization technique and energy-based homogenization method. 

With the help of the finite element analysis technique, corresponding sensitivity analysis procedure 

mentioned above and optimality criteria (OC) method, the optimization model can be solved to 

evolve the microstructure of cellular material to an optimum. The convergence criterion is defined in 

terms of the change in the consecutive cycles over two iteration step as  ( 1)k kx x    , where   is a 

allowable convergence threshold which is set to be 0.01 throughout this paper. The whole 

optimization procedure for the design of microstructure unit cell of cellular material can be described 

by the flowchart in Fig. 2 and outlined as follows 

Define the design domain and 

initial configuration

Calculate the effective elastic 

tensor using energy-based 

homogenization method

Calculate the objective value 

and sensitivity of objective 

function

Update the design variables 

using OC method

Converged？

Stop and output results

N

Y

Apply periodic boundary 

condition and FEA analysis

 

Fig. 2 Flowchart of the optimization procedure 

Step 1: Define the design domain and optimization parameters with the volume fraction, filter 

radius and penalty factor. Discretize the periodic design domain using finite element mesh and 

construct initial configuration. 



Step 2: Apply periodic boundary conditions. Carry out finite element analysis and output the 

corresponding strain displacement field. 

Step 3: Calculate the effective elastic tensor based on the energy-based homogenization method. 

Step 4: Calculate the objective value and the sensitivity of the objective function on the design 

variables 

Step 5: Update the design variables using optimality criteria method. 

Step 6: Judge the absolute value of the change in the consecutive cycles of the optimization. If the 

absolute value of the difference is less than the allowable convergence threshold, then converge, 

output the result, otherwise, repeat the step 2 to step 5. 

The design of material microstructures highly depend on the optimization parameters and 

optimization algorithm, which lead to the numerical problem that the objective function is hard to 

converge and the optimization parameters is hard to select[1]. This is mainly because of the fact that 

there are multiple solutions in the design of microstructures, i.e. different microstructures could 

possess the same physical property[1]. Moreover, the applied periodic boundary conditions would 

result in a uniformly distributed sensitivity field, thus making the design variable update more 

impossible. So the initial distribution would be design specifically based on engineer’s experience at 

the beginning of the optimization iteration, which could increase the inhomogeneity of the design 

domain and have certain guidance on the optimal microstructure configuration, so as to guide the 

direction of optimization iterative possess , prevent the multiple solutions from emerging during the 

material design procedure, and accelerate the update of design variables, which benefit the reduction 

of the sensitivity of optimization algorithm on the optimization parameters and the improvement of 

computational efficiency. According to the geometric symmetry and the number of holes in the 

design domain, several typical initial configurations are shown in the Fig. 3. 

         

Initial=1        Initial=2        Initial=3        Initial=4        Initial=5 

Fig.3. Different initial design configuration 

5. Numerical examples and discussion 

In all the examples of this section, the Young’s moduli and Poisson’s ratio of the solid material 

are selected as 1.9E  and 3.0 respectively. The design domain of the unit cell of microstructure 

is discretized into 40 40 four-node square elements (Q4). The black region in the distribution 

represents the solid material part and the white region represents the holes (namely the void regions), 

the gray region represents the intermediate density area. 

5.1 Cellular material microstructures with extreme elastic property 

When considering the various volume fraction and initial design configuration, the optimal 

microstructure with extreme shear modulus and corresponding effective elasticity matrixes are 

shown in Table 2. 

 

 

 



Table 2 Optimal microstructures and effective elasticity matrixes of cellular materials with extreme shear modulus 

for various volume fraction and initial configuration. 

Initial 

configuration 

Volume 

fraction 

Optimal topology configuration 
Effective elasticity matrixes

HD  
11 35 

 

0.25 

  

















5128.000

05798.05592.0

05592.05798.0

 

5128.0G   

 

0.4 

  

















8358.000

00422.19228.0

09228.00701.1

 

8358.0G   

 

0.55 

  

















2762.100

09410.14364.1

04364.19410.1

 

2762.1G   

 

0.4 

  

















8611.000

00720.19613.0

09613.00720.1

 

8611.0G   

 

0.55 

  

















3351.100

00283.25043.1

05043.10284.2

 

3351.1G   
 

 

Fig. 4. Comparison between the current solutions and HS upper bound 



 
Fig. 5 The iterative curve of microstructures for 

maximizing shear modulus, volume=0.4, Initial=2 

 
Fig. 6 The iterative curve of microstructures for 

maximizing shear modulus, volume=0.55, Initial=3 

When the volume fractions are set to be 0.25, 0.40, 0.55 of the design domain respectively, the 

corresponding shear modulus values for different initial design configuration are 0.5128, 0.8611, 

1.3351. As can be seen from Fig. 6, all the value of effective shear modulus exceed the 

corresponding Hashin-Shtrikman upper bound when the optimization objective of this example is to 

obtain the microstructures of cellular material with extreme shear modulus, which is in good 

agreement with the conclusion of reference [33] that the Hashin-Shtrikman upper and lower bound 

formulation is not the best choice for predicting the macroscopic effective shear modulus of 

composite materials. It also verifies the correctness and reliability of the proposed method for the 

design of extreme shear modulus of the microstructure. 

When the volume fraction is set to be same, the values of extreme shear modulus for various 

initial design configurations are almost the same and the iterative process is stably convergent. For 

example, when the the volume fraction is set to 0.4, the extreme shear modulus of material 

microstructure is 0.8358 and 0.8611 respectively for the initial design configuration of Initial=2 and 

Initial=4. Similarly, when the the volume fraction is set to 0.55, the extreme shear modulus of 

material microstructure is 1.2762 and 1.3351 respectively for the initial design configuration of 

Initial=3 and Initial=5.  

Fig. 5 and Fig. 6 shows the iteration histories of the objective function under the volume 

fraction 0.40, Initial=2 and the volume fraction 0.55, Initial=3 respectively. It can be found that the 

objective function stably and rapidly converge to their final solutions. And it can be concluded that 

the initial design configuration is necessary and effective to prevent the multiple solutions from 

emerging, restrain a uniform distribution of sensitivity field from being obtained, and avoid the 

oscillation of the iterative process, which will benefit the computational efficiency. A number of 

numerical experiments indicate that the sensitivity of optimization parameters for the optimization 

algorithm is reduced under the various initial design configurations. 

Table 3 Optimal microstructures and effective elasticity matrixes of cellular materials with extreme bulk modulus 

for various volume fraction and initial configuration. 

Initial 

configuration 

Volume 

fraction 

Optimal topology configuration 
Effective elasticity matrixes

HD  
11 35 

 

0.25 

  

















0117.000

03941.03593.0

03593.03941.0

 

3767.0K   



 

0.4 

  

















0578.000

02217.15839.0

05839.08383.0

 

8070.0K   

 

0.55 

  

















8156.000

09464.10673.1

00673.19464.1

 

5069.1K   

 

0.4 

  

















0837.000

00295.10

07031.00295.1

 

8663.0K   

 

0.55 

  

















1518.000

00285.27910.0

07910.02129.2

 

4559.1K   
 

 

Fig.7. Comparison between the current solutions and HS upper bound 

 
Fig.8. The iterative curve of microstructures for 

maximizing bulk modulus, volume=0.4,Initial=4 

 
Fig.9. The iterative curve of microstructures for 

maximizing bulk modulus, volume=0.55,Initial=5 



Under the various volume fractions and initial design configurations, the optimal 

microstructures with extreme bulk modulus and corresponding effective elastic matrixes are shown 

in Table 3. 

When the volume fractions are set to be 0.25, 0.40, 0.55 of the design domain respectively, the 

corresponding bulk modulus values for different initial design configurations are 0.3767, 0.8663, 

1.5069. As can be seen from Fig. 7, all the value of effective bulk modulus are close to the 

corresponding Hashin-Shtrikman upper bound when the optimization objective of this example is to 

obtain the microstructures of cellular material with extreme bulk modulus, which is in good 

agreement with the prediction result for the effective bulk modulus of composite material in the 

reference [18]. It also verifies the correctness and reliability of the proposed method for the design of 

extreme bulk modulus of the microstructure. 

In accordance with the conclusion that the microstructures with extreme shear modulus is 

designed, the value of extreme bulk modulus for various initial design configuration are almost the 

same and the iterative process is stably convergent when the volume fraction is set to be same. The 

objective function stably and rapidly converges to their final solutions when the initial configuration 

is designed specifically, as shown in Fig. 8 and Fig. 9. It can be concluded that the initial design 

configuration is necessary and effective to avoid the oscillation of the iterative process, restrain a 

uniform distribution of sensitivity field from being obtain, which benefit the improvement of 

computational efficiency and the reduction of the sensitivity of optimization algorithm on the 

optimization parameters. 

5.2 Cellular material microstructures with prescribed elastic property 

Table 4 Optimal microstructures and effective elasticity matrixes of cellular materials with different prescribed 

Poisson’s ratio for different initial configuration 

Initial 

configuration 

Prescribed 

effective 

Poisson’s 

ratio 

Optimal topology configuration 

Effective elasticity matrixes
HD  

11 35 

 

-1 

  





















0193.000

06689.04583.0

04583.06685.0

6855.0  

 

-0.5 

  





















0116.000

07681.03685.0

03685.07952.0

4634.0  

 

-0.3 

  





















0284.000

08655.02727.0

02727.08655.0



3151.0  

 

0 

  





















0122.000

04711.00019.0

00019.05341.0

0035.0  

 

0.3 

  

















0768.000

06090.01809.0

01809.06090.0

2971.0  

 

0.5 

  

















0385.000

05717.03206.0

03206.06173.0

 

5193.0  

 

1 

  

















7026.000

09871.09039.0

09039.09871.0

 

9157.0  

 

 
Fig. 10. The iterative curve of microstructures for 

1 , volume=0.4, Initial=5 

 
Fig. 11. The iterative curve of microstructures for 

3.0 , volume=0.4, Initial=4 



 
Fig. 12. The iterative curve of microstructures for 1 , volume=0.4, Initial=3 

The optimal topology configuration and effective elasticity matrix can be obtained using 

different effective Poisson ratios as the optimization objectives under various initial design 

configurations, as shown in Table 3. Though the comparative analysis it can be found that the 

effective Poisson's ratio is 6855.0  when the optimization objective is set to be 1 , which 

is close to the numerical result and similar to the optimal microstructure of the reference[2]. The 

difference between the optimized result and the prescribed target is relatively smaller when the 

optimization objective is set to be other prescribed values, and the clear topology configuration also 

can be obtained. 

The iteration histories of the different optimization objectives(such as 1 , 3.0 , 

1 )under various initial design configurations (such as Initial=5、Initial=4、Initial=3) are shown as 

Fig.10, Fig.11 and Fig.12 respectively. It can be found that the objective function stably and rapidly 

converge to their optimal solutions. 

The analysis above show that the proposed method is correct and effective to the design of the 

material microstructures with prescribed properties, and also indicate that the initial design 

configuration can avoid the oscillation of the objective function effectively and improve the 

computational efficiency to a great extent. 

6. Conclusion 

In this paper, an efficient energy-based homogenization method is used to evaluate the effective 

elastic properties of the periodic microstructure unit cell. The topology optimization technique is 

utilized to obtain an optimal microstructural configuration with extreme properties or desired 

properties subject to a volume fraction constraint under five categories of typical initial design 

configuration. Several 2D examples are presented to demonstrate the effectiveness and correctness of 

the proposed method in the design of microstructures, and also indicate that the initial design 

configuration can solve the problem of multiple solutions and avoid the oscillation of the objective 

function effectively in the iterative process, and this may result in the efficient computational 

efficiency and the lower sensitivity of the optimization algorithm on the optimization parameters. 

Many interesting microstructures and the corresponding effective elastic tensors under various initial 

design configurations are found and presented. 
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