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Abstract: Uncertainty analysis is a hot research topic in Multidisciplinary Design Optimization (MDO) for 

complex mechanical systems. Existing MDO works typically assume that uncertainties are independent of 

each other. In real-world engineering systems, however, correlations do exist between different 

uncertainties. The MDO methods without considering correlations between uncertainties may cause 

inaccurate and thus misleading optimization results. In this paper, we make contributions by proposing a 

new MDO approach based on the ellipsoidal set theory to investigate characteristics of correlated 

uncertainties and incorporate their effects in the MDO through an advanced collaborative optimization 

method, where the quantitative model of correlated uncertainties is transformed into constrains of 

subsystems. Both a mathematical example and a case study of an engineering system are provided to 

illustrate feasibility and validity of the proposed method. 

Key words: Collaborative Optimization; Correlated Uncertainties; Ellipsoidal Set; Multidisciplinary 

Design Optimization; speed reducer 

1. Introduction 

Modern complex mechanical systems typically contain multiple subsystems with high functional 

demands and performance requirements. Conventional engineering design methods applied serial design 

methods, which consider different subsystems in accordance with different design stages. These 

conventional design methods actually split inherent connections between subsystems, making them 

difficult in meeting requirements of modern mechanical systems. Multidisciplinary design optimization 
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(MDO) methods have been developed to overcome this difficulty and are becoming a trend for designing 

modern complex mechanical systems[1-6].However, the conventional MDO is a deterministic method, 

which failed to consider uncertainties. In practice, uncertainties can exist due to many factors such as 

changes in load, material properties, part geometry and operating conditions. Therefore, over the last few 

years there has been an increased emphasis on the uncertainty analysis in MDO.  

Uncertainty-based MDO methods can be roughly categorized into probabilistic and non-probabilistic 

methods. Among the probabilistic methods, Du and Chen [7] proposed an integrated MDO method 

encompassing a statistical approach for propagating and mitigating external and internal uncertainties and 

a multidisciplinary robust design procedure based on system uncertainty analysis (SUA) and concurrent 

subsystems uncertainty analysis (CSSUA) methods [8].Koch et al. [9] obtained probability characteristics 

of random variables based on statistical techniques, then estimated system performance characteristics by 

uncertainty analysis. Among the non-probabilistic methods, Gu et al. [10] investigated uncertainty 

propagation through a multidisciplinary system and integrated the worst-case estimates of propagated 

uncertainty into a robust optimization framework. An implicit uncertainty delivery method was further 

proposed to estimate uncertainty in [11].Harish et al. [12] used the evidence theory to quantify variables of 

uncertainty for MDO. Chu et al. [13] used the advanced kriging model to control uncertainties from all 

aspects, provided an effective and interactive process to reduce the uncertainties in conceptual design. 

The above-mentioned methods aim at handling different kinds of uncertainties in MDO, but with an 

assumption that the uncertainties are independent of each other. In many real mechanical design cases, 

however, uncertainties can be correlated [14-16]. The existing MDO procedures without considering the 

correlations between uncertainties may lead to inaccurate, thus misleading design results for these systems. 

In this paper we advance the state-of-the art by proposing a new MDO approach based on the ellipsoidal 

set theory to handle correlated uncertainties in MDO. 

The remainder of this paper is organized as follows: Section 2 presents the concept of correlated 

uncertainties. In Section 3 a mathematical model based on the ellipsoidal set theory is built to estimate 

correlated uncertainties. Building upon the constructed mathematical model, Section 4 presents the new 

MDO method considering correlated uncertainties. In Section 5 the purposed method is illustrated with a 

mathematical example and a case study of an engineering example system. Section 6 gives conclusions as 

well as directions for future work. 
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2.The concept of correlated uncertainties 

Let x1, x2, … ,xn represent random uncertainties, which can be collectively denoted by a vector 

X=(x1,x2,…, xn)
T
. The corresponding covariance matrix C is: 

1 1 2 1

2 1 2 2

1 2

( ) ( , ) ( , )

( , ) ( ) ( , )

( , ) ( , ) ( )

n

n

n n n

D x Cov x x Cov x x

Cov x x D x Cov x x
C

Cov x x Cov x x D x

 
 
 =
 
 
 

L

L

M M O M

L
                

（1） 

In (1),D(xi) is the variance of random uncertainty xi, Cov(xi,xj) is the covariance of random uncertainties xi 

and xj. Covariance matrix C depicts correlations between uncertainties. In the case of all random 

uncertainties are not correlated, C becomes a diagonal matrix. For xi and xj, the relation between 

correlation coefficient 
i jx xρ and covariance ( , )i jCov x x is as follows[17]: 

( , ) ( ) ( ) ( )

( ) ( )i j

i j

i j i j i j

x x

x x i j

Cov x x E x x E x E x

D x D x
ρ

σ σ

−
= =

                    

（2） 

where E(xi) is the mean of xi, 
ixσ is the standard deviation of xi. The range of correlation coefficient

i jx xρ

is[-1, 1].In the case of (0,1]
i jx xρ ∈ ,positive correlation takes place meaning that if xi increases 

(decreases),xj increases (decreases) accordingly (Fig. 1 (a)); in the case of [ 1,0)
i jx xρ ∈ − ,negative 

correlation occurs meaning that if xi increases (decreases), xj decreases (increases) accordingly (Fig. 1 

(b)).If 
i jx xρ =0, then xi and xj are not correlated, but not necessarily independent. 

 

              

          (a) Positive correlation                          (b) Negative correlation 

Fig. 1 Schematic diagram of correlated uncertainties 
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3. The model of correlated uncertainties 

Ben-Haim and Elishakoff et al. [18] proposed a mathematical model "Bounded-but-Unknown" to 

evaluate uncertainties in mechanical systems. Ben-Haim [18-20] also studied inherent connections 

between uncertainties and convexity, and proposed different kinds of convex set models to deal with 

uncertainties, such as the energy-bound model, envelop-bound model, slope-bound model, and 

Fourier-bound model. Elements in a convex set are possible functions of uncertain events. In the geometric 

space, the convex model has a special shape and size. The shape of the convex set represents how much we 

know about information of uncertainties. The size of the convex set reflects the fluctuation degree of 

uncertainties [21]. Particularly, the energy-bound model can represent the range of deterioration of 

quadratic functions; the envelop-bound model is mainly used to describe components dimensions and 

geometric tolerance; the slope-bound model is often applied to state derivative boundedness of an 

uncertain function; the Fourier-bound model characterizes spectral coefficients of uncertain phenomena. 

Ellipsoidal model can be used not only to construct transient energy model and Fourier-bound model, but 

also to describe static uncertain parameters, which make it have more applications [18]. Therefore, the 

ellipsoidal model is adapted in this work to describe correlated uncertainties. 

In the following subsections, we review basics of the interval model (Section 3.1) and ellipsoidal 

model (Section 3.2) first, and then propose a quantitative model based on them for modeling correlated 

uncertainties in Section 3.3.  

3.1 Interval model 

The upper and lower limits of uncertainty x are x
u
,x

l
, respectively. The interval model can thus be 

expressed as: 

[ , ] { }l u l u

px x x x R x x x= = ∈ ≤ ≤
                       

(3) 

The midpoint of the interval can be calculated by following formula: 

_

( ) ( ) / 2l u

px mid x x x= = +
                             

(4) 

The radius of the interval is: 

( ) ( ) / 2u l

px rad x x x∆ = = −
                            

(5) 
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which can reflect the deviation size of uncertain factor x. 

An interval model is suitable for circumstances where only upper and lower bounds of uncertainties 

are known. Since the construction of an interval model requires little information, it is the simplest convex 

set model and cannot reflect correlations between uncertainties. Hence the uncertainty analysis based on 

the interval model may lead to wrong results. In practice, the applications of the interval model are 

restricted. 

3.2 Ellipsoidal model 

Ellipsoidal model depicts uncertainties with an ellipsoid where the major and minor axises are not 

parallel with the coordinate axises. Since the ellipsoidal model can approximate most of convex sets, it is 

more attractive than other convex set models [22].In general, an ellipsoidal model of n dimensional vector 

X can be expressed as: 

_ _
2{ ( ) ( ) }TX E X X X Q X X ε∈ = − − ≤

                       

(6) 

where
_

X is the nominal value of X, Q is a characteristic matrix of convex set, which determines the shape 

and the principal axis direction of the ellipsoid. ε is the radius of the ellipsoid, which describes the size of 

the ellipsoid as a positive number. Refer to [22-24] for more details of the ellipsoidal model. 

Then-dimensional uncertainty vector X can be represented by a set D: 

}0),({ ≤= εxHXD
 

where the m-dimensional vector (m≤n) ε is the size of the set, that is, the fluctuation degree of x. When ε=0, 

the elements in set D only have nominal values, then x is a deterministic parameter, and 

_

( ,0) 0H x = .When ( , )H x ε is twice differentiable at point 
_

x, the mixed partial derivative is: 

_

2

, 0

0; ( 1,2, , ; 1, 2, )
i j x x

H
i n j m

x
ε

ε
= =

 ∂
= = =  ∂ ∂ 

L L

             

(7) 

 

we can obtain: 

_ _1
( , ) ( ) ( )

2

T TH x X X Q X X Jε ε≅ − − −
                 

(8) 
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where  

_

2 2 2
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∂ ∂ ∂
= − − −
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L

 

When Q is a positive definite matrix, ( , ) 0H x ε ≤  can be approximated as anellipsoidwith a 

smooth boundary. 

3.3 Ellipsoidal model under correlated uncertainties 

In this subsection, we propose an integrated model based on the interval model and ellipsoidal model 

for modeling correlated uncertainties. As defined earlier, X=(x1,x2,…,xn)
T
 is a vector of random 

uncertainties. The upper and lower bounds of X are 
1 2 n( , , , )U u u u TX x x x= L and 

1 2 n( , , , )L l l l TX x x x= L

respectively. The mean of X is: 

_ _ _
1 1 2 2

1 2( , , , ) ( , , , )
2 2 2

u lu l u l
T Tn n

n

x xx x x x
X x x x

++ +
= =L L

               

(9) 

The ellipsoidal modelunder the condition of correlated uncertainties is as follows: 

1
_ _

1 1 2 1

1 1 1 1
_ _

2 1 2 21 2

_ _

1 2

( ) ( , ) ( , )

( , ) ( ) ( , )
( ) ( )

( , ) ( , ) ( )

T
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n n n nn n n

D x Cov x x Cov x x
x x x x

Cov x x D x Cov x x
G X X C X X

x x x xCov x x Cov x x D x

ε

−

−

    − −    
    = − − = ≤
    
    − −    

L

L
M M M M

M M O M

L
 

(10)

 

When uncertainties (m dimension, m<n) are correlated, thedeviations of these uncertainties can be 

represented by:
 

_

( 1,2, , )i i ix x i mδ = − = L
                             

(11) 

which can be expressed by a vector form:
 

Page 6 of 27

http://mc.manuscriptcentral.com/cera

Concurrent Engineering: Research and Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

1 2{ , , , , , } ( 1,2, , )T T T T T

i m i mδ δ δ δ δ= =L L L  

The deviation range of the ithvariable T

iδ can be represented by an ellipsoid set. Then we can obtain a 

multi-ellipsoidal model: 

1 2{ : },( 1,2, , )T

i i i i iE C i mδ δ δ δ ε−∈ = ≤ = L
                      

(12) 

Where Ci is a covariance matrix for the ith ellipsoidal set, which determines the shape and principal axis 

direction of ellipsoidal, i.e., describes correlations of uncertainties. εi(i=1,2,…, m) is the real constant 

which is used to limit the size of the ellipsoid. If the value ofεiis very large, it will lead to the constraint of 

ellipsoidal model not working in the MDO; if the value of εi is very small, it will result in a local optimal 

solution. So the value of εishould be set properly. Refer to [21] for ways to estimate the value of εi.  

As an illustration, consider an MDO problem with two uncertainties x and y, and [ 1,1]x∈ − ,

[1,5]y ∈ .The correlation coefficient between x and y is ρxy=-0.3. Suppose x and y are both normally 

distributed, the correlation coefficient matrixρ0 and covariance matrix C are as follows: 

0

1 0.3
( )

0.3 1
ρ

−
=

−
，

1/ 3 0.2
( )

0.2 4 / 3
C

−
=

−
 

The formula of ellipsoidal model is: 

_ _
1 1 2

0 1/ 3 0.2 0
( ) ( ) ( ) ( ) ( )

3 0.2 4 / 3 3

T T
x x

G X X C X X
y y

ε− −− − −
= − − = ≤

− − −
 

Calculating corresponding maximum inscribed ellipse (as shown in Fig. 2), we can get the smallest radius 

of ellipsoid. 
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Fig. 2 Maximum inscribed ellipse 

4. MDO under correlated uncertainties 

In this section, we first review basics of collaborative optimization (CO), and then propose an 

advanced CO method considering correlated uncertainties. 

4.1 Collaborative optimization  

CO is an effective MDO method, which decomposes a complex system into several 

subsystems[25-27].Each subsystem represents a local optimization problem. Correlations or dependencies 

between subsystems are embodied in the system level. CO can facilitate information organization and 

management, leading to high computational efficiency. 

Suppose the design optimization problem can be decomposed into n subsystems. The CO 

mathematical expression in the system-level is as follows: 

* 2

1

min ( )

. . ( ) ( ) 0 , 1, 2, ,
is

i j ij

j

f Z

s t J Z z x i n
=

= − = =∑ L

 

where f(Z) is an objective function to evaluate different design solutions concerning factors such as weight, 

strength, deformation. Ji(z)is the ith consistency constraint, Z is the matrix of design variables, zj is the jth 

design variable, si is the number of design variables for the subject i, xij
* 
is the jth optimization result from 

the ith subsystem, n represents the number of subsystems. 

The ith subsystem optimization model is: 
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* 2

1

min ( ) ( )

. . ( ) 0

is

i i ij j

j

i i

J x x z

s t c x

=

= −

≤

∑

 

where xi is a local design variable of the subsystem i, xij represents the jth variable of subsystem i. zj
*
 is jth 

variable assigned from the system-level to subsystem i, ci(xi) is the local constraint. 

4.2 CO considering correlated uncertainties  

For conventional MDO methods, due to mutual coupling relationships between subsystems, it is 

difficult to estimate propagating characteristics of correlated uncertainties. But with the help of the 

quantitative model proposed in Section 3.3, these propagating characteristics can be addressed in the 

subsystem optimization model. Fig. 4 illustrates the CO framework under the condition of correlated 

uncertainties, where for the ith subsystem the quantitative model of correlated uncertainties(i.e., Eq. (10)) 

is transformed into constraint
2

i iG ε≤ . 

 

 

Fig. 3 CO framework of correlated uncertainties 

 

Specifically, the following gives the optimization steps of MDO under the condition of correlated 

uncertainties. 

Step 1. Categorize uncertainties of a system design into two types: correlated uncertainties and 

uncorrelated uncertainties. For correlated uncertainties, determine the correlation coefficient of any 

two uncertainties, and then obtain the covariance matrix of correlated uncertainties (Eq. (2)).  
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Step 2. Establishthe ellipsoidal model using Eq. (10). 

Step 3. According to requirements of the real engineering problem and the lower and upper bounds of 

correlated uncertainties, use the minimum volume method of [23,28] to calculate the minimum 

radius ε of ellipsoid. 

Step 4. Under the CO framework of Fig. 3, decouple a large-scale coupling engineering problem into a 

series of small-scale, paralleled subsystems considering factors such as different design disciplines, 

different work teams, or different design stages. 

Step5. The ellipsoidal models obtained in step 2 and step 3 are added as constraints to the subsystem 

optimization models.  

Step 6. Utilize the MATLAB fmincon function to solve the optimization problems of the CO framework. 

It is worth mentioning that in step 5 the ellipsoidal models should be transformed to constraints. 

However, Many scholars may be inclined to use finite element method (FEM) to compute stiffness, stress 

and vibration (performance function) of complex mechanical systems. Since FEM is numerical 

computation method, it is very difficult to apply our proposed method directly. In such cases, the surrogate 

model may be suitable method to obtain explicit expression of design variables and performance function 

before implement our proposed method There are three main steps to build surrogate model: 1) Design 

reasonable simulation experiments. 2) obtain data set of design variables and performance function by 

implemening simulation experiments. 3) build surrogate model to obtain explicit expression of design 

variables and performance function by using data sets. The common surrogate models include polynomial 

response surface, support vector machine and kriging model et al. In practical applications, physical 

problems of the disciplines may have different degrees of nonlinearity and different levels of digital noises, 

the selection of the surrogate model  depends on specific optimization problems. In addation, the 

surrogate model is not only a method to obtain explicit expression, but also a method to significantly 

reduce the computation time and simplify the complexity of optimization model with coupled subsystems 

under correlated uncertainties. 
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5. Case Studies 

In this section, both a mathematical example and a case study of an engineering system are provided 

to illustrate feasibility and validity of the proposed method. 

5.1 A mathematical example 

To illustrate the proposed MDO method, we first consider a classic MDO problem [29], which has 

two subsystems. Each subsystem has a coupling state variable. Nonlinear coupling relationship exists 

between the two subsystems. The mathematical expression is as follows: 

22

2 3 1

y
Min f x x y e

−= + + +  

where 

2

1 1 2 3 2

2 1 1 3

0.2y x x x y

y y x x

= + + −

= + +
 

1
1

2
2

. . ( ) 1 0
8

1 ( ) 0
10

y
s t g

y
g

= − ≥

= − ≥
 

The lower and upper bounds of design variables x1, x2, x3and coupling state variablesy1, y2are shown in 

Table 1. 

 

Table 1 Lower and upper bounds of design variables 

 x1 x2 x3 y1 y2 

value range [-10,10] [0,10] [0,10] [3.5,∞) (-∞,24] 

 

The mean valuesofx1,x2,x3are 0,5,5, respectively. To demonstrate and understand effects of correlated 

uncertainties on optimization results, we consider three example cases of the correlation coefficient matrix 

of the three uncertaintiesx1, x2, x3: 

(1) Case 1:x1, x2 are positively correlated; x1, x3 are negatively correlated; x2, x3 are positively correlated. 
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1

1 0.2 0.1

0.2 1 0.3

0.1 0.3 1

ρ
− 

 =  
 −   

(2)Case 2:x1, x2, x3 are positively correlatedwith each other. 

    

2

1 0.2 0.1

0.2 1 0.3

0.1 0.3 1

ρ
 
 =  
 
 

 

(3) Case 3:x1, x2, x3 are negatively correlatedwith each other. 

   

3

1 0.2 0.1

0.2 1 0.3

0.1 0.3 1

ρ
− − 

 = − − 
 − −   

According to Eq. (2),the covariance matricesunder the above three cases can be calculated in combination 

with the interval theory as: 

         

1

100 / 3 10 / 3 5 / 3

10 / 3 25 / 3 5 / 2

5 / 3 5 / 2 25 / 3

C

− 
 =  
 −   

         

2

100 / 3 10 / 3 5 / 3

10 / 3 25 / 3 5 / 2

5 / 3 5 / 2 25 / 3

C

 
 =  
 
   

          

3

100 / 3 10 / 3 5 / 3

10 / 3 25 / 3 5 / 2

5 / 3 5 / 2 25 / 3

C

− − 
 = − − 
 − −   

Then according to Eq. (10),we construct ellipsoidal models of x1,x2,x3as 

1

1 1
_ _

1 2

1 2 2 1

3 3

0 100/3 10/3 5/3 0

( ) ( ) 5 10/3 25/3 5/ 2 5

5 5/3 5/ 2 25/3 5

T

T

x x

G X X C X X x x

x x

ε

−

−

− − −     
     = − − = − − ≤     
     − − −     

1

1 1
_ _

1 2

2 2 2 2

3 3

0 100/3 10/3 5/3 0

( ) ( ) 5 10/3 25/3 5/ 2 5

5 5/3 5/ 2 25/3 5

T

T

x x

G X X C X X x x

x x

ε

−

−

− −     
     = − − = − − ≤     
     − −        

1

1 1
_ _

1 2

3 2 2 3

3 3

0 100/3 10/3 5/3 0

( ) ( ) 5 10/3 25/3 5/ 2 5

5 5/3 5/ 2 25/3 5

T

T

x x

G X X C X X x x

x x

ε

−

−

− − − −     
     = − − = − − − − ≤     
     − − − −       
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According to the minimum volume method [23，28], we can getε1=ε2=ε3=1.732. As an illustrating 

example, correlations of the three uncertainties under case 1 are shown in Fig. 5(a), and correlations 

between any two of the three uncertainties are shown in Fig. 5 (b),(c),(d). 

 

    

              (a)x1-x2-x3                                                 (b) x1-x2 

      

              (c) x1-x3                                                   (d) x2-x3 

Fig. 4 Schematic diagram of correlated uncertainties 

 

The CO model under correlated uncertainties for case 1 is as follows: 

System level: 

                     

22

2 3 1

1 2

0 1 2 3 1 2

:

. . ,

[ , , , , ]

y
Min f x x y e

s t J e J e

X x x x y y

−= + + +

≤ ≤

=

 

Subsystem 1: 
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2 2 2

1 11 1 12 2 13 3

2 2

11 1 12 2

11 12

13 1 2

2

1 1

1 11 12 12 11 12

: ( ) ( ) ( )

( ) ( )

. . 10 10, 0 10

0 10, , ,

[ , , , , ]

Min J x x x x x x

y y y y

s t x x

x g g

G

X x x x y y

ε

= − + − + −

+ − + −

− ≤ ≤ ≤ ≤

≤ ≤

≤

=

                                                                    

        

                                

 

Subsystem 2: 

                    

2 2

2 21 1 23 3

2 2

21 1 22 2

21 23

2

1 2 1 1

2 21 23 21 22

: ( ) ( )

( ) ( )

. . 10 10, 0 10

, ,

[ , , , ]

Min J x x x x

y y y y

s t x x

g g G

X x x y y

ε

= − + −

+ − + −

− ≤ ≤ ≤ ≤

≤

=

                                                                    

 

In subsystem 1, G1 is a constraint to describe the correlations between x11,x12 and x13 under case 1. When 

considering correlations under case 2 and case 3, 
2

2 2G ε≤ ,
2

3 3G ε≤  should be used to substitute 

2

1 1G ε≤ ,respectively. The value of compatibility constraint e is 0.001. The corresponding CO calculation 

framework is shown in Fig. 5. 

 

 

Fig. 5 CO framework of the mathematical example (case 1) 
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Optimization results can be sensitive to the initial point, particularly, the optimization result of the CO 

method tends to converge to the local optimal solution close to the initial point [30-32]. Three initial points 

are selected in this example (Table 2) to illustrate such effects. 

 

Table 2 Initial points 

 x1 x2 x3 y1 y2 f 

Point 1 1 2 5 10 4 20.1059 

Point 2 5 0 0 6 7 6.0009 

Point 3 2 2 2 5 8 11.0003 

 

The optimization iteration procedures with initial points 1, 2, and 3are shown in Fig.6 (a), (b), and (c), 

respectively.  

 

 

(a)  
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(b)  

 

(c)  

Fig. 6 Optimization iteration procedures (CO: conventional MDO method without considering correlated 

uncertainties; CCCO1, CCCO2, CCCO3: proposed MDO using ρ1, ρ2, ρ3 as the correlation coefficient 

matrix of three uncertainties, respectively)  

 

The optimization results using the three initial points are shown in Table 3.From Table 3 we can see 

that for different initial points they take different numbers of iterations (n columns) to converge to the same 

optimization result (in f column). The initial point can affect the calculation efficiency. 
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Table 3 Optimization results 

 
x1 x2 x3 y1 y2 f 

 n  

 Point1 Point2 Point3 

CO 2.9218 0.0003 0 3.5 4.8480 3.5078 480 274 364 

CCCO1 2.7309 0.5380 3.2705 3.5 7.8175 7.0603 565 381 292 

CCCO2  2.6358 0.9509 1.9294 3.5 6.3813 6.3353 1071 776 761 

CCCO3 2.8763 0.0001 3.4501 3.5 8.2526 6.9504 365 201 128 

 

Table4 summarizes the difference (in percentage) of results obtained using the proposed MDO 

method and those obtained using the conventional MDO in terms of the optimization variation defined as: 

Optimization variatio 100%n CCCO CO

CO

f f

f

−
= × . 

Apparently correlations between uncertainties affect the optimization results. Therefore, for accurate 

and informative optimization results in practical engineering, correlations must be considered during the 

MDO procedure; ignoring the correlations between uncertainties leads to inaccurate, actually optimistic 

results that may mislead the system designs. 

 

Table 4 Optimization variations (unit: %) 

 CCCO1 CCCO 2 CCCO3 mean 

 101.27 80.61 98.14 93.34 

 

From the optimization results in Tables 3, we can see that the best-obtained result of CO method is 

3.5078; of CCCO1 method is 7.0603; of CCCO2 method is 6.3353; of CCCO3 method is 6.9504. Among 

the three example cases considered, when the three uncertainties are all positively correlated (CCCO2), the 

optimization result is the best; when the three uncertainties have mixed positive and negative correlations 

(CCCO1), the optimization result appears the worst for the considered parameter values.  

However, this example only has three design variables. As for a large number of design variables, the 

original method needs to calculate all correlation coefficients among design variables, which is 

cumbersome and may not seize the essence of the optimizaition problem. In such cases, principal 
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component analysis method may be used. Firstly, all design variables are grouped according to different 

disciplines; Secondly, linear combinations of design variables should be obtained for each group. Finally, 

the correlations between linear combinations of design variables are calculated. However, it is worth 

mentioning that the proposed advanced CO algorithm may be not suitable when there are a large number 

of variables.This is mainly because a lot of coupling variables will lead to difficulty to satisfy the 

compatibility constraints, which is still a challenging problem in MDO.  

5.2 An engineering example 

Consider a speed reducer structure design problem [33]. Figure 7 illustrates the speed reducer diagram. 

The design objective is to minimize the volume of the structure (objective function). The main constrains 

are the bending stress and contact stress of the gear tooth, the torsional deformation and stress 

requirements of the shaft. 

 

 

Fig. 7 The structural diagram of speed reducer 

 

The mathematical optimization model of speed reducer is as follows: 

2 2 2 2

1 2 3 3 1 6 7

3 3 2 2

6 7 4 6 5 7

0.7854 (3.3333 14.9334 43.0934) 1.5079 ( )

7.477( ) 0.7854( )

Min f x x x x x x x

x x x x x x

= + − − +

+ + + +                                                                            
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3

1 1 2 3

3 2

2 1 2 3

2 4

3 4 2 3 6

2 4

4 5 2 3 7

2 7 3

5 4 2 3 6

2 8 3

6 5 2 3 7

7 6 4

8

. . 27 / ( ) 1 0

397.5 / ( ) 1 0

1.93 / ( ) 1 0

1.93 / ( ) 1 0

10 (745 / ( ) 1.69 10 / 1100 0

10 (745 / ( ) 1.575 10 / 850 0

(1.5 1.0) / 1 0

(1.1

s t g x x x

g x x x

g x x x x

g x x x x

g x x x x

g x x x x

g x x

g

= − ≤

= − ≤

= − ≤

= − ≤

= + × − ≤

= + × − ≤

= + − ≤

= 7 5

9 2 3

10 1 2

11 1 2

1.0) / 1 0

40 0

5 / 0

/ 12 0

x x

g x x

g x x

g x x

+ − ≤

= − ≤

= − ≤

= − ≤

 

Wherex1 is gear tooth width, x2 is the teeth module, x3 is the number of teeth of the pinion,x4 is the distance 

between the bearing1, x5 is the distance between bearing 2, x6 is the diameter of the shaft 1, x7 is the 

diameter of the shaft 2, g1, g2 are constraints of gear tooth bending stress and contact stress, g3~g8 are 

constraints of the shaft deformation, stress et al, g9~g11are geometric constraints. The bounds of each 

variable are shown in Table5. Moreover, if the case contains implicit equations of the constraint equations, 

it is simple and effective to use the surrogate model technology to transform into explicit expression. 

 

Table 5 The lower and upper bounds of design variables(unit: mm) 

 x1
 

x2 x3
 

x4 x5
 

x6
 

x7
 

value range [2.6 3.6] [0.7 0.8] [17 23] [7.3 8.3] [7.3 8.3] [2.9 3.9] [5.0 5.5] 

 

According to [34], 

1 2 3dx x xϕ=  

Whereφd is the coefficient of tooth width,x1, x2, x3 are uniform distributed with mean values of 3.1, 0.75 

and 20, respectively. x1, x2, x3 have certain correlations and the corresponding correlation coefficient matrix 

is 

1 0.12 0.20

0.12 1 0.24

0.20 0.24 1

ρ
 
 = − 
 − 
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The covariance matrix is obtained as: 

1 1 2 1 3

2 1 2 2 3

3 1 3 2 3

( ) ( , ) ( , ) 1/12 0.001 0.1

( , ) ( ) ( , ) 0.001 0.01/12 0.012

( , ) ( , ) ( ) 0.1 0.012 3

D X Cov X X Cov X X

C Cov X X D X Cov X X

Cov X X Cov X X D X

   
   = = −   
   −     

Then according to (10), the ellipsoidal model is obtained as: 

1

1 1
_ _

1 2

2 2

3 3

3.1 1/12 0.001 0.1 3.1

( ) ( ) 0.75 0.001 0.01/12 0.012 0.75

20 0.1 0.012 3 20

T

T

x x

G X X C X X x x

x x

ε

−

−

− −     
     = − − = − − − ≤     
     − − −     

According tothe CO strategy, the optimization model of speed reducer is decomposed into three 

subsystems. The CO model under the condition of correlated uncertainties is as follows: 

System level: 

                 1 2 3
f f f f= + +  

                 

2 2 2

1 1 11 2 12 3 13

2 2 2

2 1 21 4 24 6 26

2 2 2

3 1 31 5 35 7 37

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

J x x x x x x

J x x x x x x

J x x x x x x

= − + − + −

= − + − + −

= − + − + −

 

Subsystem 1: 

                2 2

1 11 12 13 130.7854 (3.3333 14.9334 43.0934)f x x x x= + −  

  

2 2 2

1 1 11 2 12 3 13( ) ( ) ( )J x x x x x x= − + − + −  

      

3

1 11 12 13

3 2

2 11 12 13

9 12 13

10 11 12

11 11 12

_ _
1 2

. . 27 / ( ) 1 0

397.5 / ( ) 1 0

40 0

5 / 0

/ 12 0

( ) ( )T

s t g x x x

g x x x

g x x

g x x

g x x

G X X C X X ε−

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − − ≤

 

Subsystem 2: 

 

3 2 2

2 26 24 26 21 267.477 0.7854 1.5079f x x x x x= + −  
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2 2 2

2 1 21 4 24 6 26( ) ( ) ( )J x x x x x x= − + − + −  

      

3

1 21 22 23

3 2

2 21 22 23

2 4

3 4 22 23 26

2 7 3

5 24 22 23 26

7 26 24

9 22 23

10 21 22

11 21 22

_

. . 27 / ( ) 1 0

397.5 / ( ) 1 0

1.93 / ( ) 1 0

10 (745 / ( ) 1.69 10 / 1100 0

(1.5 1.0) / 1 0

40 0

5 / 0

/ 12 0

( )T

s t g x x x

g x x x

g x x x x

g x x x x

g x x

g x x

g x x

g x x

G X X C

= − ≤

= − ≤

= − ≤

= + × − ≤

= + − ≤

= − ≤

= − ≤

= − ≤

= −
_

1 2( )X X ε− − ≤

 

Subsystem 3: 

                
3 2 2

3 37 35 37 31 377.477 0.7854 1.5079f x x x x x= + −  

2 2 2

3 1 31 5 35 7 37( ) ( ) ( )J x x x x x x= − + − + −  

      

3

1 31 32 33

3 2

2 31 32 33

2 4

4 35 32 33 37

2 8 3

6 35 32 33 37

8 37 35

9 32 33

10 31 32

11 31 32

_

. . 27 / ( ) 1 0

397.5 / ( ) 1 0

1.93 / ( ) 1 0

10 (745 / ( ) 1.575 10 / 850 0

(1.1 1.0) / 1 0

40 0

5 / 0

/ 12 0

( )T

s t g x x x

g x x x

g x x x x

g x x x x

g x x

g x x

g x x

g x x

G X X

= − ≤

= − ≤

= − ≤

= + × − ≤

= + − ≤

= − ≤

= − ≤

= − ≤

= −
_

1 2( )C X X ε− − ≤

 

The corresponding CO calculation framework is shown in Fig. 8, where the value of compatibility 

constraint is e=0.01,the ellipsoidal minimum radius ε is 2.191. 
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Fig. 8 CO framework of speed reducer  

 

Three initial design points are shown in Table6. 

 

Table 6 Initial design points 

 x1
 

x2 x3

 
x4 x5

 
x6

 
x7

 
f
 

Point1      3.5       0.70        17          7.3       7.715        3.35       5.099     2879.1 

Point2     3.0       0.75       18         7.5       7.500       3.40      5.200     3128.4 

Point3     3.2       0.78       20         7.9       7.599       3.20      5.100     3709.9 

 

The optimization iteration procedures of conventional MDO and proposed MDOare shown in Fig. 9, 

and the corresponding optimization results areshown in Table7. 
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(a) 

 

(b) 

 

 

(c) 

Fig.9 Optimization iteration procedures of speed reducer (CO: conventional MDO method without considering 

correlated uncertainties; CCCO: proposed MDO using ρ as the correlation coefficient matrix of 

uncertainties) 

 

Table 7 Optimization results 

  x1
 

x2 x3

 
x4 x5

 
x6

 
x7

 
f
 

 

Point1 

CO 3.570   0.7 17 7.30 7.713 3.276 5.216 2959.1 

CCCO 3.564   0.7 20 7.30 7.711 3.279 5.218 3527.5 

 CO 3.568   0.7 17 7.30 7.714 3.271 5.210 2953.3 
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Point2 CCCO 3.564   0.7 20 7.30 7.709 3.279 5.218 3528.0 

 

Point3 

CO 3.569   0.7 17 7.30 7.713 3.275 5.211 2955.3 

CCCO 3.564   0.7 20 7.30 7.708 3.279 5.217 3527.4 

 

From Table 7 we can see that the proposed method using different initial points generates 

optimization results with smaller variations than the conventional CO method for this example system. In 

addition, compared with optimization results obtained by the conventional CO method, values of the 

objective function increase 19.21%, 19.46%, and 19.36%, respectively under the three initial points by 

using our proposed method. This is consistent with the observation made in the mathematical example that 

the conventional MDO method tends to give inaccurate and optimistic results that can mislead the system 

design activities, while our proposed method generates results that are more informative and applicable to 

the engineering reality. 

6. Conclusions and Future Work 

In this paper characteristics of correlated uncertainties are investigated, and a new quantitative model 

of correlated uncertainties is established using the ellipsoidal model and the interval theory. Based on the 

constructed uncertainty correlation model, a new MDO method is proposed to consider effects of 

correlated uncertainties on the system optimization. Both a mathematical example and an engineering 

example are analyzed to illustrate the feasibility and validity of the proposed method. The proposed 

method belongs to non-probabilistic MDO methods and is suitable to solve design problems with a given 

range of uncertainties. In this paper, uncertainties are considered to be independent of each other. If the 

uncertainties are coupled (not independent of each other), it may fail to establish the correlated model of 

uncertainties. However, it would be a feasible method to deal with the coupled uncertainties by combining 

system sensitivity analysis with Rosenblatt transformation, Nataf transformation or orthogonal 

transformation. Hence, how to model coupled uncertainties is the key research in the future work. 

Moreover, we only consider correlations of static uncertainties in this paper. In our future work we will 

investigate how to quantify correlations of dynamic uncertainties in mechanical systems and new models 

to consider their effects in the MDO procedures.  
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