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Abstract
Degradation failure is one of the main reasons for complex mechanical systems losing their functions. Research on multi-
disciplinary design optimization under uncertainties should shift from static uncertainties to time-varying uncertainties.
Aiming at time-varying uncertainties in mechanical systems, we put forward a multidisciplinary reliability design optimiza-
tion method using stochastic process theory. First, we investigated the characteristics of time-varying uncertainties in
complex mechanical systems, and then utilized stochastic process theory to quantify time-varying uncertainties. Second,
through combining the multidisciplinary simultaneous analysis and design optimization method, the model of multidisci-
plinary design optimization under time-varying uncertainties is established. Moreover, a mathematical problem and an
engineering example are provided to illustrate the accuracy and effectiveness of the proposed method.

Keywords
Multidisciplinary design optimization, time-varying uncertainty, stochastic process, time-varying reliability model, simulta-
neous analysis and design

Date received: 5 August 2016; accepted: 10 October 2016

Academic Editor: Yongming Liu

Introduction

Multidisciplinary design optimization (MDO) of com-
plex mechanical systems has shown wide application
recently.1–4 Increasing attentions are being paid on
MDO under uncertainties in recent years. Du and
Chen5,6 proposed an uncertainty calculation method
based on global and local sensitivity equation by com-
bining uncertainty analysis method with error propaga-
tion in the process of physical measurement, and then
put forward a system uncertainty analysis (SUA)
method and concurrent subsystem uncertainty analysis
(CSSUA) method. Gu et al.7 derived limit expression
of uncertainty propagation based on Taylor series
method, and then built stochastic uncertainty analysis
model. The above-mentioned researches have made tre-
mendous contributions on MDO under aleatory and
epistemic uncertainties. However, note from researches
in previous studies8–13 that the degradation failure is

one of the main reasons for complex mechanical sys-
tems lost their functions. There are variant time-
varying uncertainties in complex mechanical systems,
such as performance degradation of electronic compo-
nent, strength decrease, material aging, wear, oxida-
tion, and corrosion.14,15 Although research methods to
deal with aleatory and epistemic uncertainties in MDO
may largely improve the reliability of complex systems,
however, these research methods cannot accurately
describe the sources, essential characteristics, and pro-
pagation properties of time-varying uncertainties and
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cannot simply be applied to deal with time-varying
uncertainties in MDO.

Currently, methods to deal with time-varying uncer-
tainties under single-discipline analysis can be divided
into two categories. (1) Probabilistic reliability meth-
ods, such as Bayesian method and Monte Carlo
method. These methods are very effective when dealing
with random time-varying uncertainties. However,
these methods need to know the probability distribu-
tions in advance, require that time is clearly defined,
and samples must be adequate. In addition, these prere-
quisites are often difficult to obtain in the design pro-
cess. Melchers16 indicate that when there is only one
random load, the force can be expressed by the extreme
value distribution, and then calculate structure failure
probability using either FORM or SORM method,
another case is that using series reliability method to
calculate the reliability of the life cycle by only consid-
ering some of the key period in life cycle, such as storm
periods. Veneziano et al.17 assumed that time-varying
uncertainties are Gauss distributions and proposed a
system reliability analysis method. Breitung and
Rackwitz18 proposed a system reliability analysis
method using rectangular wave renewal process to
describe time-varying uncertainties, and combined
Gauss process and rectangular wave renewal process to
deal with time-varying uncertainties.19–21 Li and
Zhang22 assumed that the deterioration process of resis-
tance was a Gamma process and proposed a time-
variant reliability assessment. (2) Non-probabilistic
reliability methods, such as interval analysis and convex
sets. These methods do not take full advantage of the
information in design process and the final design
results are conservative. According to the upper and
lower boundary of time-interval reliability, Shinozuka23

provided calculation formulas. Andrieu-Renaud
et al.,24 Cazuguel et al.,25 and Li and Mourelatos26

established the formulas to calculate the time-varying

reliability index and compared the differences and rela-
tions between time interval reliability and moment
reliability. Jiang et al.27 proposed an effective non-
probabilistic model process method for time-variant
uncertainty analysis.

Until now, the methods to process time-varying
uncertainties under single-discipline analysis have made
certain progress. However, during the whole product
life cycle, forms of time-varying uncertainties are diver-
sified and often correlated to each other. Since there are
hierarchical and non-hierarchical hybrid coupled rela-
tionships between subsystems in MDO, time-varying
uncertainties which exist in subsystem levels may have
different influence on the final output of the system. In
addition, MDO is a kind of coordination system opti-
mization method for large systems, which leads to diffi-
culties to quantify time-varying uncertainties.

Aiming at dealing with time-varying uncertainties in
MDO, this article proposes a multidisciplinary reliabil-
ity design optimization (MRDO) method under time-
varying uncertainties. The remainder of this article is
arranged as follows. In section ‘‘Time-varying reliabil-
ity model,’’ we analyze the characteristics of time-
varying uncertainties, and then introduce stochastic Ito
process to quantify time-varying uncertainties. In sec-
tion ‘‘Time-varying reliability MDO,’’ MDO model
under time-varying uncertainties is established, and the
specific operation steps are given. In section ‘‘Case
studies,’’ a mathematical problem and an engineering
example are given to illustrate the feasibility and effec-
tiveness of the proposed method. Section ‘‘Conclusion’’
gives the research conclusion.

Time-varying reliability model

Reliability analysis under time-varying uncertainties

For mechanical products, time-varying uncertainties
include material performance, working environment,

Figure 1. Time-varying reliability diagram.
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service time, and load effect.14,15 The product perfor-
mance degrades gradually over time. The degradation
process of product performance is a dynamic time-
varying process.15 Time-varying reliability method is
often applied to deal with time-varying uncertainties.
Time-varying reliability means that the failure rate pf
(t0–t1) of limit state function is less than the given fail-
ure rate during time interval t0–t1. In other words, the
reliability R of limit state function at any time is greater
than the allowable reliability [R], which is shown in
Figure 1.

Currently, the methods considering time-varying
uncertainties assume that strength and stress of
mechanical parts follow certain probability distribu-
tions, respectively,28–31 which cannot be used to evalu-
ate dynamic evolution process of time-varying
uncertainties. According to this, we attempt to propose
a time-varying reliability prediction model based on
stochastic differential equation theory which can calcu-
late the reliability index at any time.

Stochastic differential equation

Compared to traditional probability methods, Ito dif-
ferential equation is better to deal with uncertainties in
mechanical systems. The structure of Ito differential
equation is simple, theoretical concept is clear, so it is
very easy to combine Ito differential equation with
MDO to solve time-varying uncertainties. Assume
O={v} is the sample space of stochastic experiment,
and T is a set of parameters (time). For each t2T, there
is a random variable X(t, v). A set of variables X(t, v)
is a stochastic process. The definition domain of v is
the entire sample space, and the definition domain of t
is the entire timeline [0, N] or a time period [0, T]32

X (t,v) : fOg3 ½0, T � ! R

Assume that there are m time-varying factors, then

X (t,v)= ½x1(t,v), x2(t,v), . . . , xm(t,v)�T

Set (O, F, P) is a probability space; F is the s-alge-
bra of O, P is the probability measure of O, and the
random variable X(t, v) should satisfy the following
Ito equation

dX (t,v)= u(t)X (t,v)dt+ v(t)X (t,v)dW (t,v)
X (t0)=X0

�
ð1Þ

where u(t) is the drift rate which reflects the influence of
deterministic factors, and v(t) is the fluctuation rate
which reflects the influence of time-varying uncertainties.

The drift rate can be expressed as follows

u(t)=
1

n� 1

Xn

1

ln
Xi+ 1

Xi

ð2Þ

where Xi is the observation value at time point i (i=1,
2, ., n).

The fluctuation rate can be expressed as

v(t)=
Xn

1

ln
Xj+ 1

Xj
� u(t)

� �2

n� 1

2
64

3
75

1=2

ð3Þ

where Xj is the observation at time point j (j=1, 2, .,
n). The draft rate and the fluctuation rate are affected
by the number of observation points. The more the
observation points, the more the precision of the result.
For different problems, the number of observation
points can be set according to precision needed.
Although Ito differential equation has many advan-
tages, it is not applicable for those cases when load
mutation exists in the engineering structure.

Time-varying reliability model

If the random variable X satisfies the following
equation

dX (t,v)= u(t)X (t,v)dt+ v(t)X (t,v)dW (t,v) ð4Þ

equation (4) also can be expressed as

dX (t,v)

X (t,v)
= u(t)dt+ v(t)dW (t,v) ð5Þ

Assume that Y(t)= ln X(t, v), which leads to

lnX (t)� lnX (0)=

ðt
0

dX

X
+

1

2

ðt
0

�1

X 2
v2X 2ds ð6Þ

where s is the time variable

Y (t)� Y (0)=

ðt
0

vdWs +

ðt
0

(u� 0:5v2)ds

According to equations (7) and (8)

ðt
0

ds= t,

ðt
0

dWs =Wt �W0, W0 = 0

Y (t)= lnX (0)+ u� 1

2
v2

� �
t+ vW (t)

ð7Þ

E( lnX (t))= lnX (0)+ u� 1

2
v2

� �
t ð8Þ

We can obtain

Xu et al. 3



lnE(X (t))= ln E(X (0))e u�1
2
v2ð Þt + vW (t)

h i
= lnX (0)+ u� 1

2
v2

� �
t + ln e0:5v

ffiffi
t
p ð9Þ

The relationship between the expected logarithm and
logarithmic expectation can be obtained by

lnE(X (t))=
E( lnX (t))+D( lnX (t))

2
ð10Þ

By substituting equation (10) in equations (8) and
(9), we can obtain

D( lnX (t))= v
ffiffi
t
p

where ln X(t) is a normal distribution function, and the
corresponding mean value and variation coefficient are
lnX (0)+ (u� v2=2)t and v

ffiffi
t
p

, respectively

lnX (t);N lnX (0)+ u� 1

2
v2

� �
t, v2t

� 	
ð11Þ

Assume that the limit state function is

G t,vð Þ=S tð Þ � d tð Þ ð12Þ

where G(t, v). 0 means the structure is safe, and G(t,
v)\ 0 indicates failure of the structure. Therefore, the
reliability probability is expressed as

R(t)=P( ln S(t)� ln d(t).0)

Let Z = ln S(t)� ln d(t), and ln S(t) and ln d(t) are
independent from each other. Thus, Z also obeys nor-
mal distribution. The mean value and variance of Z are
expressed as

uZ = uln S(t) � uln d(t) ð13Þ

sZ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sln S(t) +sln d(t)

p
ð14Þ

Then, the probability density function of Z is

f(Z)=
1ffiffiffiffiffiffi

2p
p

sZ

e

�(Z�uZ )2

2s2
Z ð15Þ

Let s=(Z � uZ)=sZ . Since reliability index can be
expressed as

R(t)=P(Z.0)=

ð‘
0

f(Z)dZ =
ffiffiffiffiffiffi
2p
p ð‘

ZR(t)

e�0:5s2

ds

=
ffiffiffiffiffiffi
2p
p ð�ZR(t)

�‘

e�0:5s2

ds

The reliability index can be obtained by
R(t)=F(2ZR(t)). Substitute equation (15) in equations
(13) and (14)

ZR(t) = � uln S(t) � uln d(t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sln S(t) +sln d(t)

p ð16Þ

where

uln S(t) � uln d(t) = ln S(0)+ (uS � 0:5v2
S)t � ( ln d(0)

+ (ud � 0:5v2
d)t)

and

ln S(0)� ln d(0)= � ZR(t)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sln S(t) +sln d(t)

p
+((uS � 0:5v2

S)� (ud � 0:5v2
d))t

S(0)

d(0)

= exp

(
�ZR(t)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
ln S(t) +s2

lns(t)

q

� us �
1

2
v2

s

� �
� ud �

1

2
v2

d

� �� 	
t

)
ð17Þ

Once the reliability index ZR(t) is given, take initial
S(0) and d(0) as constrains to quantify time-varying
uncertainties, and the time-varying reliability optimiza-
tion model can be constructed.

Time-varying reliability MDO

Multidisciplinary simultaneous analysis and design

Generally, a multidisciplinary optimization problem
consists of two subsystems. The multidisciplinary simul-
taneous analysis and design (SAND) method33 is intro-
duced to construct the optimization framework, which
is shown in Figure 2. Since time-varying uncertainties
analysis is complicated and time-consuming, it is better
to combine it with simple and easy MDO strategy.
Compared to the other MDO strategies, SAND expres-
sion is simpler and easier to understand. SAND strat-
egy can substitute solver for analyzer, which can reduce
the high time-consuming analysis process.

In Figure 2, Xs and Ps are the shared design variable
vector and shared design parameter vector, respectively.

Optimizer

Discipline1 Discipline2

Figure 2. SAND optimization framework.
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Xi is the design variable vector of discipline i, Pi is the
design parameter vector of discipline i, yij is the coupled
state variable vector which is the output from i and
input to discipline j, and y0ij is the corresponding auxili-
ary variable vector. g(i) and h(i) represent the inequality
and equality constraints of discipline i. m1 and m2 are
the residuals of coupled state variable and auxiliary
variable after the multidisciplinary analysis. SAND
optimization strategy passes the values of design vari-
able vector, coupled state variable vector, and auxiliary
variable vector to each discipline; according to the val-
ues of the design variable vector and auxiliary variable
vector, each discipline gets the values of output coupled
variable vector after multidisciplinary analysis. At the
same time, coupled state variable vector, residuals, and
constraints of all disciplines are passed to the optimizer.
Using this optimization strategy, each discipline can be
analyzed independently. The optimization model of
SAND is listed as follows

min f (Xs,Ps,Xi,Pi, Y )

s:t: g(i)(Xs,Ps,Xi,Pi, Y
0
�i)� 0

h(i)(Xs,Ps,Xi,Pi, Y
0
�i)= 0

mi = Yi� � Y 0�i = 0 ; i= 1, 2

Y = fy12, y21g ; Y 0= fY 012, y1
21g

DV = fXs,Xi, Y , Y
0g

ð18Þ

Ito-RBTV-MDO model

The time-varying reliability optimization model of
MDO is shown as follows

min f (Xs, d , �X s, r,Xi, d , �X i, r,Ps, d , �Ps, r,Pi, d , �Pi, r, �Y )

s:t: Pr½G(i)
TV (Xs, d ,Xs, r,Xi, d ,Xi, r,Ps, d ,Ps, r,Pi, d ,Pi, r,Y�i) � 0�

� ½RTV
i �

g(i)(Xs, d , �X s, r,Xi, d , �X i, r,Ps, d , �Ps, r,Pi, d , �Pi, r, �Y �i)� 0

h(i)(Xs, d , �X s, r,Xi, d , �X i, r,Ps, d , �Ps, r,Pi, d , �Pi, r, �Y �i)= 0

X l
s, d �Xs, d �X u

s, d ,X l
i, d �Xi, d �X u

i, d ,

�X l
s, r� �X s, r� �X u

s, r,
�X l

i, r � �X i, r� �X u
i, r

DV = fXs, d , �X s, r,Xi, d , �X i, rg
ð19Þ

where Xs,d and Ps,d are the shared deterministic design
variable vector and shared deterministic design para-
meter vector, respectively. Xi,d and Pi,d are the shared
deterministic design variable vector and shared determi-
nistic design parameter vector of discipline i, respec-
tively. Xs,r and Ps,r are the shared random variable
vector and shared random parameter vector, respec-
tively. Xi,r and Pi,r are the shared random variable

vector and shared random parameter vector of disci-
pline i, respectively. �X is the mean value of X. G

(i)
TV ( � ) is

the limit state function by considering time-varying
uncertainties. Pr½G(i)

TV ( � ).0� � [Ri] is the time-varying
reliability constraint of discipline i, and [RTV

i ] is the
reliability requirement of discipline i.

The two subsystems Ito-RBTV-MDO model is
shown in Figure 3.

In Figure 3, g
(i)
Pr is the time-varying reliability con-

straint equation of discipline i. The optimization pro-
cess is given as follows:

Step 1. Deterministic MDO is implemented using
the SAND method.
Step 2. Time-varying uncertainties are analyzed and
quantified (the data of time-varying uncertainties
are obtained by simulate sampling method in this
article).
Step 3. Apply Ito equation theory to construct relia-
bility optimization models under time-varying
uncertainties.
Step 4. Convert time-varying reliability optimization
models to constraints in MDO and implement a
new deterministic MDO.

The corresponding flow chart is shown in Figure 4.

Case studies

In this section, both a mathematical example and a case
study of an engineering system are introduced to illus-
trate feasibility and validity of the proposed method.

A mathematical example

This is a very classic MDO problem which includes two
disciplines. Each discipline has a coupled state variable;
nonlinear coupled relationship exists between two disci-
plines.34 In order to reflect actual situation more clearly,
we have modified this mathematical example. Two time-
varying uncertainties p1 and p2 are added in optimiza-
tion model, which to research how system limit state
function G(t, v) are effected.

Optimizer

Discipline1 Discipline2

Figure 3. Ito-RBTV-MDO optimization framework.
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The optimization model is expressed as follows

Min f =(x1 � 1:2)2 +(x2 � 1:5)2 + y1 + e�y2 � p1p2

s:t: g1 =
y1

3:16

� �
� 1 � 0

g2 = 1� y2

24

� �
� 0

where

y1 = x1 + x2 + x2
3 � 0:2y2 � p1p2

y2 =
ffiffiffiffiffi
y1

p
+ x2 + x3 + p1p2

The corresponding SAND model is shown in
Figure 5.

The corresponding limit state function is given by
G(t,v)= (p1(t,v)+ 0:2)(p2(t,v)+ 0:4)� x1x2x3. In
this mathematical example, we only consider how the
system performance is affected by time-varying uncer-
tainties. How to establish a reasonable and scientific
limit state function in the practical engineering prob-
lems depends on the requirements of system perfor-
mance in design stage.

The design parameters p1 and p2 are time-varying
uncertainties. The corresponding sampling data are
obtained by MATLAB simulation during 10 years,
which is shown in Figure 6.

Using equations (3) and (4), to calculate the drift
rates and fluctuation rates

up1
= � 0:000926 ; vp1

= 0:012

up2
= � 0:002 ; vp1

= 0:024

State function is expressed as

S(t)= (p1(t,v)+ 0:2)(p2(t,v)+ 0:4)

d(t)= x1x2x3

R(t)=P(G(t,v).0)=P( ln S(t)� ln d(t).0)

The design requirement of reliability index is 0.998
after 10 years, then

ZR(t) = ZR(120) = � 2:8782

According to equation (17), we have

S(0)

d(0)
= e0:8151 = 2:2594

Through updating state equation under time-varying
uncertainties and implementing the optimization pro-
cess mentioned in section ‘‘Ito-RBTV-MDO model,’’
the corresponding optimization results are shown in
Table 1, where TIV is the optimization result without
considering time-varying uncertainties; RBTV is the
reliability optimization result under time-varying
uncertainties.

The reliability indexes of state function in each year
are shown in Figure 7.

From the optimization results of these two methods,
we can note that the value of objection function of
RBTV method increases by 10.1% than TIVs.
However, without considering the time-varying uncer-
tainties, the reliability index of TIV method is 0.8262
after 10 years, which is obviously lower than the relia-
bility index of design requirement 0.998. The reliability
index of RBTV method is 0.9999 after 10 years by con-
sidering the time-varying uncertainties, which still satis-
fied the design requirement of reliability.

An engineering example

This is a speed-reducer optimization problem,35 and the
structure is shown in Figure 8. The objective function is
to minimize the volume of the structure. The main con-
strains are the bending stress and contact stress of the

Figure 4. Time-varying reliability optimization flow chart.

Figure 5. SAND model of mathematical example.
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gear tooth, the torsion deformation, and stress require-
ments of the shafts.

The corresponding optimization model is as follows

Min f = 0:7854x1x2
2(3:3333x2

3 + 14:9334x3 � 43:0934)

� 1:5079x1(x
2
6 + x2

7)

+ 7:477(x3
6 + x3

7)+ 0:7854(x4x2
6 + x5x2

7)

s:t: g1 = 27=(x1x2
2x3)� 1� 0

g2 = 397:5=(x1x2
2x2

3)� 1� 0

g3 = 1:93x2
4=(x2x3x4

6)� 1� 0

g4 = 1:93x2
5=(x2x3x4

7)� 1� 0

g5 = 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(745x4=(x2x3)

2 + 1:69 3 107

q
=x3

6 � 1100� 0

g6 = 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(745x5=(x2x3)

2 + 1:575 3 108

q
=x3

7 � 850� 0

g7 =(1:5x6 + 1:0)=x4 � 1� 0

g8 =(1:1x7 + 1:0)=x5 � 1� 0

g9 = x2x3 � 40� 0

g10 = 5� x1=x2� 0

g11 = x1=x2 � 12� 0

where x1 is the tooth width; x2 is the gear module; x3 is
the number of teeth of the pinion; x4 is the distance
between the bearings 1; x5 is the distance between bear-
ings 2; x6 is the diameter of the shaft 1; x7 is the dia-
meter of the shaft 2; g1 and g2 are the constraints of
bending stress and contact stress, respectively; g3–g8 are
the constraints of the shaft deformation, stress, and so
on; and g9–g11 are the geometric constraints.
The bounds of each design variable are shown in
Table 2.

The limit state functions of g5 and g6 are as follows

G1(t,v)= 1100x3
6 � 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(745x4=(x2x3)

2 + 1:69 3 107

q
G2(t,v)= 850x3

7 � 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(745x5=(x2x3)

2 + 1:575 3 108

q

Assuming that design variables x6 and x7 are time-
varying uncertainties. The corresponding data of time-
varying uncertainties are obtained by simulation meth-
ods, which are shown in Figure 9.

Using equations (3) and (4) to calculate the drift rate
and fluctuation rate

Table 1. Optimization results.

x1 x2 x3 y1 y2 f

TIV 1.200 1.500 1.978 3.160 7.256 20.8393
RBTV 1.407 1.676 0.991 3.160 4.444 20.7545

Figure 6. Time-varying data of two design parameters.
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ux6
= � 0:0001207 ; vx6

= 0:001092

ux7
= � 0:00007335 ; vx7

= 0:0005607

Let us consider

S1(t)= 1100x3
6, d1(t)= 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(745x4=(x2x3)

2 + 1:69 3 107

q
S2(t)= 850x3

7, d2(t)= 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(745x5=(x2x3)

2 + 1:575 3 108

q
R1(t)=P(G1(t,v).0)=P( ln S1(t)� ln d1(t).0)

R2(t)=P(G2(t,v).0)=P( ln S2(t)� ln d2(t).0)

Suppose 1 year later, the requirement of reliability
index is 0.98, then

ZR1(t) = ZR2(t) = ZR(12) = � 2:0538

According to equation (17)

S1(0)

d1(0)
= e0:3932 = 1:4817

S2(0)

d2(0)
= e0:2018 = 1:2236

The corresponding optimization results are shown in
Table 3. TIV is the optimization result without consid-
ering time-varying uncertainties; RBTV is the reliability
optimization result under time-varying uncertainties.

The reliability indexes of limit state functions in each
month are shown in Figure 10.

Without considering the time-varying uncertainties,
the reliability indexes of g5 and g6 are 0.4991 and
0.5010, respectively, at initial time. Considering the
time-varying uncertainties, the reliability indexes of g5
and g6 are 0.9999 and 0.99140, respectively, at initial
time. 1 year later, the reliability indexes of g5 and g6 are
0.9987 and 0.9813, which still meet the reliability

Table 2. Lower and upper bounds of design variables (mm).

Design variables x1 x2 x3 x4 x5 x6 x7

Value range 2.6–3.6 0.7–0.8 17–28 7.3–8.3 7.3–8.3 2.9–3.9 5.0–5.5

Table 3. Optimization results.

x1 x2 x3 x4 x5 x6 x7 g5 g6 f

TIV 3.5 0.7 17 7.3 7.715 3.35 5.287 1.032E28 0 2994.2
RBTV 3.5 0.7 18 7.3 7.716 3.35 5.287 20.5142 20.2345 3171.7

Figure 7. Comparison of reliability indexes.

Figure 8. Structure diagram of speed reducer.
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requirements. Although the value of objective function
under time-varying uncertainties is 5.23% higher than
the results without considering time-varying uncertain-
ties, the reliability performance under time-varying
uncertainties has been greatly improved. From this
engineering example, it is worth noting that time-
varying uncertainties have shown a great influence on
the reliability performance of the system. In practical
engineering optimization, the impact of time-varying
uncertainties should be properly considered.

Conclusion

1. The time-varying uncertainties of complex
mechanical system are investigated using sto-
chastic process and corresponding time-varying
reliability optimization model are proposed.

2. Using the SAND method, the model of MRDO
under time-varying uncertainties is established.
Then, a mathematical example and an engineer-
ing example are introduced to verify the accu-
racy and effectiveness of the proposed method.

3. The proposed method is suitable for estimating
gradual time-varying uncertainties, such as fati-
gue strength and material wear, which is not
suitable for mutational time-varying uncertain-
ties, such as mutational load and stress. As for
mutational time-varying uncertainties, it may be
calculated by combining extreme value theory
with series reliability analysis method.

Figure 9. Time-varying data.

Figure 10. Reliability indexes of g5 and g6.

Xu et al. 9
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4. Due to the complexity of MDO, diverse mani-
festations, and correlation of time-varying
uncertainties, it is very difficult to quantify the
characteristics of time-varying uncertainties in
some cases, which will be further investigated.
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