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Abstract 
This paper presents a novel algorithm, i.e., hybrid multi-objective harmony search algorithm with 

genetic operation (HMOHS). In HMOHS, each harmony vector has two strategies (i.e. GA and HS) to 

generate a new vector of harmony among the process of evolution. The two strategies’ cooperation is 

controlled by dynamical parameter HMCR, which can effectively choose an optimal strategy for 

maintaining a balance between exploration and exploitation during an evolution process. In addition, 

a new self-adaptive operator is applied to enhance the ability of global optimization in the earlier search 

stage, meanwhile, it enhances the ability of local optimization with fine-tuning operation in the later 

search process, and this adaptive operator can replace the role of parameter BW. HMOHS has been 

evaluated on benchmark problems, against its variants and three state-of-the-art multi-objective 

evolutionary algorithms in terms of spread, convergence, coverage and convergence speed. The 

obtained results indicate that the HMOHS is a promising approach for solving these types of problems.  
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1. INTRODUCTION 
 

Multi-objective optimization problems (MOPs) linked to more than one objective for minimization 

and/or maximization, simultaneously. Its result is a set of solutions, namely “non-dominated solutions” 

or “compromise solutions”, rather than a single one, which are optimal tradeoff candidates among all 

sub-objectives[1][2]. Each solution, in the non-dominated set, is a Pareto point. Multi-objective 

optimization aims to find Pareto front and non-dominated solutions. Since its search space is more large 

in multi-objective problems. Thus, MOPs takes more time to conduct search procedure which achieves 

optimization for sub-objective, simultaneously. Traditionally, MOPs have been solved by weighted sum 

approach, which converts MOP to a single objective optimization problem by giving fixed weights to 

sub-objectives. However, this method requires multiple runs, aims to get a set of non-dominated 

solutions and need much computational time resulting in a set of weak non-dominated solutions [3]. 

Recently, meta-heuristic multi-objective algorithms, proved to outperform the traditional approaches 

because of the ability to obtain Pareto optimal solutions in a single run, has been draw attention by many 

researchers and scholars. Meanwhile, some classic meta-heuristic multi-objective algorithms such as 

NSGA-II[4], SPEA2[5], and MOEA/D[6] have been widely employed for different applications.  

HS invented by Geem et al. [7] is one of the population-based meta-heuristics in an analogy with 

improvisation process where music players improvise their instruments’ pitches or notes to search a 

beautiful harmony. Improvisation process as the optimum design process which find optimal solution 

like each pitch of the harmony decides the quality of music. HS is useful to many engineering 

applications with its’ few mathematical requirements and easy implementation [8]-[12]. Currently, 

many improved HS algorithms for single-objective problems have been proposed, such as, global-best 

harmony search (GHS) algorithm [14], self-adaptive global-best harmony search (SGHS) algorithm 

[15], local-best harmony search algorithm with dynamic subpopulations (DLHS)[16], the novel global 

harmony search (NGHS) algorithm [17], and an improved adaptive binary Harmony Search (ABHS) 

algorithm [18]. In optimization applications of multi-objective harmony search (MOHS), S. 

Sivasubramani et al. used MOHS for power flow problem [3] and Environmental/economic dispatch 

[19]; I. Landa-Torres et al. presented a novel multi-objective HS for the optimal distribution of 24-h 
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emergency units [20]; S. Salcedo-Sanz et al. applied MOHS into urban traffic reconfiguration[21]; K. 

Nekooei et al. proposed an improved MOHS for placing Distributed Generators in radial distribution 

systems [22]. MOHS has been widely applied, however lack of theoretical research has existed. It may 

attribute to its certain advantage in terms of global search optimization, but it uses a stochastic random 

search which recede convergence in optimization applications. In addition, MOHS involves some 

parameters (i.e. HMCR, PAR, and BW) which have a profound impact on the performance of MOHS 

algorithm. And it is difficult to adjust these parameters since these parameters are problem-dependent.  

To solve above issues and improve performance of MOHS, a hybrid multi-objective HS with genetic 

algorithm (GA [23] ) is proposed, which inspired by hybrid mechanism with other EAs and self-adaptive 

operation such as in [24]-[26]. The characteristics of this algorithm: (1) a new harmony comes from GA 

operation with (1-HMCR) probability rather than random selection, which can improve the convergence 

toward Pareto optimal solutions, (2) dynamically fine-tuning parameter HMCR keep a balance between 

exploitation and exploration, (3) a new adaptive operator is introduced into the proposal, which 

eliminates the parameter BW and can enhance the ability of global search in initial evolution stage and 

local search in later evolution process. Problems addressed in this work can be summarized as follows: 

 A hybrid MOHS with GA is proposed, where a new harmony stems from three approaches. (1) 

memory consideration (2) pitch adjustment and (3) GA operation rather than random selection 

which is not favor of convergence during the search. 

 The proposed algorithm uses a new kind of adaptive mechanism to dynamically maintain harmony 

(or population) diversity. 

 The proposed algorithm employs dynamical parameters for HMCR, to control GA and HS 

operation for a balance between exploration and exploitation, resulting in improving the 

convergence performance. 

 The presented algorithm is evaluated with its variants and three state-of-the-art algorithms such as 

NSGA-II, SPEA2 and MOEA/D on a benchmark of MOPs. 

 Convergence speed among above mentioned algorithms is compared and analyzed. 

From Section 2 to 4, paper presents related background; an algorithm for unconstraint MOPs, 

HMOHS is proposed; experience results are presented and analyzed. Conclusion is drawn in Section 5.  

 

2. BACKGROUND 
 

The mathematical definition of a MOP for minimization can be described as follows: 
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where ( )mf x indicates the m-th sub-objective function, ( )ig x represents inequality constraints; ( )jh x  is 

equality constraints, K and N are the number of inequality and equality constraints respectively, x  is a 

vector of the solution which need to satisfy above constraints and n is decision variable space. The 

concepts of non-dominated and related terms are defined as follows: 

Definition 1. The p-th solution px dominates the q-th solution qx (denoted by p qx x ), if and only 

if    1, , : ( ) ( ) 1, , : ( ) ( ).p q p qi i l l
i m f f l m f f     x x x x  

Definition 2. A solution x is said to be non-dominated by any other solution if and only if 
* *:n x x x . 

Definition 3. For a given MOP, a Pareto optimal set (PS*) can be defined as below: 

 * * *:nPS   x x x x . 

Definition 4. For a given MOP, if it’s Pareto set is PS*, the corresponding Pareto front (PF*) can be 

defined as  * *( ) xPF f PS x . 

Most MOPs may have infinite PF*, it is time-consuming to obtain all the PF*. So, many multi-

objective evolutionary algorithms (MOEAs) are to yield a set of front (denoted as symbol PF) with finite 

size which are evenly distributed along the PF*, and thus good representatives of the entire PF*. Notice 

that Pareto optimal set (PS*) is always a non-dominated set according to definition while non-dominated 



solutions generated by an algorithm, which is denoted as symbol PS, may not be a subset of PS*. 

 

3. HMOHS ALGORITHM 
 

3.1 The Proposed Multi-Objective Harmony Search Algorithm 
 

A novel multi-objective HS algorithm (HMOHS), for solving continuous MOPs is presented. The 

proposed HMOHS algorithm differs from the previous MOHS algorithms [19]-[22] in the following 

three aspects: First, a new type of adaptive operator is designed to dynamically adjust new pitch (note) 

rather than using BW during the entire search process; second, a dynamic parameter adjustment scheme 

is presented, which can dynamically update parameter HMCR to maintain a balance for exploration and 

exploitation in search solutions; third, a new harmony vector is not from the possible range of value but 

from genetic operation with (1-HMCR) probability, which can enhance convergence speed toward PF. 

The details of the proposed algorithm are given below. 

 
3.1.1 Novel Self-adaptive operator 

 

The parameter BW reveals an arbitrary distance bandwidth. It affects performance of the algorithm 

since BW is problem-dependent. More precisely, BW with large value can help the algorithm search 

solutions in a large step and improve the diversity of solutions, while with the BW value is in favor of 

fine-tuning the solution found in a small step [15]. Thus, there exists an inherent conflict between 

exploration and exploitation for a fixed BW value. Obviously, a fixed BW value is not suitable for MOPs 

during the entire search process. Thus, some scholars introduce some self-adaptive strategies into BW in 

literatures [13], [28], [29], but these strategies are still difficult to set the interval range of the BW 

parameter for solving MOPs. Therefore, in this work, a new self-adaptive operator is proposed. We 

integrate this self-adaptive operator into this proposed algorithm, which removes the influence of BW 

on performance of algorithm. Furthermore, this self-adaptive mechanism can improve ability of global 

optimization in the earlier search stage and enhance the ability of local optimization using fine-tuning 

operation in the later search process. Its mathematical expression is given as below: 
' ( ) ( ) ( )t t t
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where ( )t
newx j donates the j-th pitch of a new harmony in current function evaluation number before self-

adaptive operation and ' ( )t
newx j is the j-th pitch after self-adaptive operation, ( ,min)t

newx j and 

( ,max)t
newx j  respectively denote the minimum and maximum limits of the j-th pitch of the new 

harmony in current function evaluation and ( ) [ ( ,min), ( ,max)]t t t
new new newx j x j x j ; rand is 

random distributed number in the interval [0, 1], T is the total number of function evaluations, t is current 

function evaluation number. This strategy provides global search with severely adjusting new pitch in 

initial phase of evolution process and it enhances local optimization by slight adjusting new pitch in latter 

stage of search process. Finally, it can improve solution diversity. Figure 1. presents distribution (symbol 

‘*’ means new pitch after self-adaptive operation) of new pitch by this proposed self-adaptive operator 

when T=25000, ( ) 0.5t
newx j  (denoted by blue line) and in the interval [0, 1]. 



 

Figure 1. Distribution of new pitch after adaptive operation during the whole evaluations 

 

3.1.2 Hybrid Mechanism and Parameter HMCR 

 

MOHS is good at global optimization but the quality of the solutions obtained is not very high partially 

due to random selection with the probability 1-HMCR, which directly threatens convergence 

performance of the algorithm toward PF*. While GA can maintain good convergence by selecting better 

solutions on purpose, but it falls into premature convergence easily. Therefore, based on the merits of 

the GA and HS, we introduce genetic operator into HS to improve effectively convergence performance 

of the proposed HMOHS algorithm. This hybrid mechanism can yield a desirable candidate solution with 

the two cooperative strategies (i.e. GA and HS) according to the stage of evolution process. The flow 

chart of a new harmony, generated by this hybrid mechanism, is presented in Figure 2. We can observe 

from the flow chart that the parameter HMCR controls genetic operation and harmony search operation 

in HMOHS. Thus, it is very important to choose an appropriate value of HMCR for performance of the 

algorithm. R. Diao and Q. Shen[30] believe that adjustment of HMCR may contribute to better 

performance of algorithm for single objective problems. Here, HMCR is dynamically changed as follows: 

   max maxmin min min
HMCR HMCR HMCR - HMCR 0.5 1 sin HMCR HMCR
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Where  HMCR t is the harmony memory considering rate in evaluation number t , 
minHMCR  and

maxHMCR are the minimum and maximum considerate rate, respectively,
minHMCR and 

maxHMCR are set 

to 0.6 and 0.9 respectively, as our preliminary experiments indicate that HMOHS with this range 

performs better on most benchmark functions. For instance, when T is set to 25000, the variable curve 

of HMCR can be seen in   Figure 3. We can observe from the figure that if HMCR tends to be large 

value, it contributes to enhance harmony search operation and deter genetic operation in search process, 

and vice versa. In initial stage of evolution process, HMCR with large value can conduct HS operation 

to enhance global search, and HMCR with small value can execute GA operation to improve optimization 

quality of solutions in the later phase. 

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

function evaluation number

x

 

 



rand HMCR

rand PAR

adaptive operation

j n

selection

crossover

mutation

j  

 

( ) ( )

1, ,

0

new ix j x j

i HMS

j n





 

a new harmony 

vector:

a harmony 

memory

NO

YES

YES

NO

YES

NO

newx  

Figure 2. Generating a new vector   Figure 3. Variation of HMCR during the whole evaluations 

 

3.1.3 The Framework of HMOHS 

 

The proposed HMOHS algorithm consists of 3 steps summarized as follows: 

Input: 

 MOP (1); 

 A stopping condition; 

 HMS: the size of harmony memory; 

 HMCRmax, HMCRmin: the range of HMCR; 

 PARmax, PARmin: the range of PAR; 

Output: 

Step 1) Initialization: 

Step 1.1) Generate an initial harmony memory in the feasible range. 

Step 1.2) Carry out a fast and non-dominated sorting operation on initial harmony memory, and 

compute current PS and PF of initial harmony memory. 

Step 2) Stopping condition:  

If stopping condition is satisfied, then stop and output PS and PF. Otherwise, go to step 3 as below. 

Step 3) Update: 

Create a random number equally distributed in the interval 0 and 1, denoted by R. 

Step 3.1) Improvisation If R is less than HMCR, a pitch of new harmony will stem from existing 

harmony memory. And then create a random number r [0,1] , if r is less than PAR obtained by (6), 

apply self-adaptive operator on this new harmony pitch. 

Step 3.2) Reproduction If R is more than HMCR, select two parents from harmony memory by 

binary tournament method; then apply genetic operators on two parents to generate a new harmony. 

Step 3.3) Combination Incorporate a new harmony generated into the existing harmony memory to 

form (1+HMS) solutions. All the solutions in the harmony memory (HM) are sorted by the non-

dominated sorting strategy which improves simultaneously the convergence and diversity in solutions.  

Step 3.4) Elitist strategy: Each melody is associated with a rank equal to its non-dominance level 

(e.g. 1 for the one best level, 2 for the second one). Then within each level or rank a crowding distance, 

which indicates the sum of distances to the closest individual along each objective, is used to define 

an ordering among individuals. To achieve wide spread of the obtained Pareto fronts, melody with 

0 0.5 1 1.5 2 2.5

x 10
4

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

fuction evaluation number
H

M
C

R



large crowding distance are preferred to melody with small crowding distance. Choose best solutions 

equal to HMS from combinational harmony memory to form new HM for the next loop. 

Step 3.5) Update of PS and PF: The harmony solutions in the first level are considered as the PS 

found so far, and compute its corresponding Pareto front in objective space. Namely, the final internal 

population is returned as an approximation to the PF. 

In the improvisation of the loop in step 3, a new pitch comes from existing harmony memory 

belonging to the first rank or level, which hopefully favors a new solution approximate to PS. The setting 

of parameter PAR should be dynamically variation, since the dynamic parameter PAR in some range 

contributes to keep a balance for diversification and intensification. To improve the performance of the 

proposed algorithm, PAR is changed during each generation as follows:  

 min max min

t
PAR( ) PAR PAR PAR

T
t                        (6) 

where PAR( )t is the pitch adjusting rate of current evaluation number,
minPAR and

maxPAR is the minimum 

and maximum pitch adjusting rate, respectively; t is the current evaluation number and T is the total 

number of the function evaluation. 

In the combination of the loop in step 3, a new harmony generated is incorporated into the 

evolutionary loop. Notice that the size of HM is equal to HMS+1 rather than 2*HMS after combination. 

Though the time required by the strategy increases, it is worthwhile since it improves diversity of the 

solutions (see in section 4.2). To show difference between two strategies in HMOHS, HMOHS with 

1+HMS combination strategy is called HMOHS and HMOHS with 2*HMS is denoted as HMOHSG. 

 

4. EXPERIMENTS AND ANALYSIS 
 

This section assesses the performance of HMOHS. Some benchmarks functions used in the paper are 

stated. Then the performance metrics measured the quality of obtained non-dominated by algorithms are 

described. Comparison with variants of MOHS is proved to improve effectively search ability by the 

hybrid with GA mechanism and tuning fine parameters. The chapter ends with a comparative analysis 

between our proposal and three state-of-art algorithms (NSGAII, SPEA2, and MOEA/D).  

 

4.1 Benchmark functions  

 
21 classical multi-objective benchmark test instances are selected in the experiment to evaluate the 

behavior of HMOHS. Test instances can be divided into three types: ZDT test suites [31], WFG test 

suites [32] and DTLZ test functions [33]. ZDT test suites are all bi-objective benchmarks, while DTLZ 

benchmarks are all three-objective test problems. The WFG suites allow users to define the benchmarks 

of MOPs with different properties. Nine problems’ bi-objective version are adopted in this experiment. 

 

4.2 Comparison HMOHS with variations of MOHS  
 

The performance metrics can be grouped into three categories depending on whether they assess the 

convergence of the obtained Pareto front, the diversity in the obtained solutions, or combined 

performance measures [34]. Three metrics are used as follows: Epsilon ( ) [35], Spread (Δ) [4], and 

Hypervolume (HV) [36]. 

In this section, the performance of the proposed HMOHS algorithm is investigated by comparing with 

HMOHSG, MOGHS [3] and MOHS [20]. The simulated binary crossover (SBX) and polynomial 

mutation are used in HMOHS and HMOHSG and the distribution indexes in both SBX and the 

polynomial mutation are set to 20. The crossover rate is 0.9, and mutation rate is 1.0/L, where L denotes 

the number of decision variables. To have a fair comparison between these algorithms, the other 

parameter settings of the MOEAs should be set the same. Table I. describes the parameters used in these 

algorithms, where symbol ‘CD’ indicates crowding distance and ‘DCD’ represents dynamical crowding 

distance [39]. In MOGHS and MOHS,
maxmin

max

ln(BW BW )
BW BW exp t

T
  

 
 
 

, BWmin=0.2 and BWmax=2. 

Symbol’----’ indicates no parameter setting. 



Table I. Parameters setting of HMOHS, HMOHSG, MOGHS and MOHS Algorithms 

HMOHS             HMOHSG              MOGHS                MOHS 

Stopping Condition                             15,000 function evaluations 

Harmony Memory Size                                   100 

HMCR                 Eq. (5)               Eq. (5)                 0.85                    0.85                

PAR                   Eq. (6)               Eq.(6)                 Eq.(6)                  Eq.(6)         

BW                                          ----                         ----                                                                             

Genetic operator                                                                                -----                 

Replacement                                   replace if better ranking and crowding distance 

Density estimator          CD                 CD                     CD                   DCD     

Combination strategy       HMS+1             2*HMS                  2*HMS               2*HMS 

In our experiment, the same number of function evaluations or NI has been seen as stopping criterion. 

These algorithms have been run 30 times independently for each benchmark problem. Table II-IV show 

the comparative results of these algorithms in terms of mean and standard deviation values (i.e. Spread, 

Epsilon and HV) obtained by 30 independent runs for each test benchmark. The values in bold represent 

the best results in these tables. Note: these metric data in tables are not absolute values but relative values. 

Table II. shows the mean and standard deviation of the Spread-metric values. We can observe from 

the table that HMOHS outperforms the other three variant algorithms in terms of Spread-metrics on most 

test suite. Accurately, HMOHS gets the best values in 16 of 21 test suite, while HMOHSG obtain the 

best ones in 5 benchmark problems. Notice that the other two variants (i.e. MOGHS and MOHS) do not 

get best values in any test problems, which indicates the multi-objective harmony search algorithm with 

new adaptive operator has better diversity than its counterparts without this mechanism on most test suite.  

Table III. presents the mean and standard deviation of the Epsilon-metric values. It is clear that 

HMOHS performs better than the other algorithms for most test suite. In other words, HMOHS is better 

than its counterparts in terms of convergence on all the benchmarks except WFG2, WFG8, DTLZ1, 

DTLZ3 and DTLZ6. It also should be noted that HMOHSG does not obtain the best value in any test 

problem, which suggests that different combination strategies in HMOHS and HMOHSG can have 

different performances in terms of convergence. 

Table IV. reveals the mean and standard deviation of the HV-metric values. For HV-metric, HMOHS 

outperforms the compared algorithms since HMOHS can offer the best results (largest here) in 17 of 21 

problems, whereas HMOHSG, MOGHS and MOHS provide the best ones in 0, 1 and 2 test functions, 

respectively. Regarding coverage, HMOHS is in the first place; MOEA/D comes in the second place; 

SPEA2 is the third; NSGA-II is rear. 

Overall, HMOHS can generate better approximations than the other variants of multi-objective 

harmony search algorithms on most of the test problems in terms of diversity, convergence and coverage. 

  



Table II. Mean and standard deviation value of spread metric on HMOHS, HMOHSG, MOGHS 

and MOHS 

 
HMOHS 

mean(std) 

HMOHSG 

mean(std) 

MOGHS 

mean(std) 

MOHS 

mean(std) 

ZDT1 

ZDT2 

ZDT3 

ZDT4 

ZDT6 

WFG1 

WFG2 

WFG3 

WFG4 

WFG5 

WFG6 

WFG7 

WFG8 

WFG9 

DTLZ1 

DTLZ2 

DTLZ3 

DTLZ4 

DTLZ5 

DTLZ6 

DTLZ7 

1.44e-01(1.4e-02) 

1.52e-01(1.4e-02) 

7.15e-01(7.7e-03) 

6.82e-01(1.4e-02) 

1.18e-01(1.1e-02) 

5.56e-01(3.7e-02) 

7.66e-01(7.2e-03) 

6.62e-02(1.0e-02) 

1.32e-01(1.9e-02) 

1.38e-01(1.5e-02) 

1.78e-01(3.8e 02) 

1.30e-01(1.4e-02) 

6.30e-01(8.0e-02) 

1.35e-01(1.8e-02) 

7.58e-01(4.2e-02) 

6.58e-01(4.4e-02) 

7.81e-01(1.3e-01) 

6.40e-01(1.3e 01) 

1.78e-01(3.1e-02) 

1.36e-01(1.3e-02) 

6.85e-01(4.0e-02) 

8.52e–01(5.0e−02) 

9.36e–01(3.6e−02) 

8.17e–01(4.8e−02) 

9.30e–01(4.8e−02) 

9.42e–01(2.1e−02) 

1.08 (1.2e−01) 

7.43e–01(1.0e−01) 

6.01e–01(8.1e−02) 

6.32e–01(4.3e−02) 

6.44e–01(7.3e−02) 

6.37e–01(7.6e−02) 

6.43e–01(7.0e−02) 

6.84e–01(5.3e−02) 

5.97e–01(7.8e−02) 

6.78e-01(6.9e-02) 

5.94e-01(5.4e-02) 

6.40e-01(6.0e-02) 

1.15 (1.1e-01) 

6.26e-01(7.3e-02) 

6.52e-01(3.8e-02) 

6.56e-01(6.9e-02) 

4.76e-01(5.0e-02) 

5.36e-01(6.3e-02) 

7.23e-01(5.1e-02) 

7.37e-01(1.2e-01) 

9.47e-01(6.1e-02) 

1.14(2.9e-02) 

8.28e-01(5.3e-02) 

3.22e-01(3.7e-02) 

3.53e-01(3.0e-02) 

3.88e-01(2.6e-02) 

3.88e-01(3.3e-02) 

3.56e-01(3.3e-02) 

7.33e-01(5.3e-02) 

3.36e-01(3.1e-02) 

7.47e-01(4.8e-02) 

6.19e-01(3.6e-02) 

6.78e-01(6.1e-02) 

6.81e-01(6.0e-02) 

5.94e-01(3.3e-02) 

6.73e-01(3.5e-02) 

7.43e-01(3.7e-02) 

5.20e-01(6.9e-02) 

5.41e-01(8.6e-02) 

7.24e-01(4.1e-02) 

7.04e-01(1.0e-01) 

8.25e-01(1.9e-01) 

1.20 (2.9e-02) 

8.59e-01(5.6e-02) 

3.17e-01(3.0e-02) 

5.46e-01(2.7e-02) 

5.32e-01(2.4e-02) 

5.63e-01(2.8e-02) 

5.45e-01(2.6e-02) 

7.37e-01(4.8e-02) 

5.27e-01(3.0e-02) 

9.10e-01(2.7e-01) 

6.26e-01(4.7e-02) 

6.50e-01(1.3e-01) 

7.33e-01(6.7e-02) 

6.15e-01(3.4e-02) 

7.11e-01(3.0e-02) 

8.36e-01(4.9e-02) 

hit rate 16/21 5/21 0/21 0/21 

 

Table III. Mean and standard deviation value of epsilon metric on HMOHS, HMOHSG, 

MOGHS and MOHS 

 

 

HMOHS 

mean(std) 

HMOHSG 

mean(std) 

  MOGHS                       

mean(std) 

MOHS 

mean(std) 

ZDT1 

ZDT2 

ZDT3 

ZDT4 

ZDT6 

WFG1 

WFG2 

WFG3 

WFG4 

WFG5 

WFG6 

WFG7 

WFG8 

WFG9 

DTLZ1 

DTLZ2 

DTLZ3 

DTLZ4 

DTLZ5 

DTLZ6 

DTLZ7 

8.74e-03(7.9e-04) 

8.90e-03(8.4e-04) 

1.86e-02(5.6e-02) 

1.13e-01(1.1e-01) 

3.18e-02(5.2e-03) 

6.86e-01(2.7e-01) 

4.57e-01(3.9e-01) 

1.87e-02(2.3e-03) 

1.66e-02(2.0e-03) 

6.60e-02(3.6e-02) 

2.98e-02(1.5e-02) 

1.60e-02(1.7e-03) 

4.24e-01(1.2e-01) 

2.01e-02(3.5e-03) 

4.36e-01(2.5e-01) 

1.22e-01(1.3e-02) 

1.76e+01(7.3e+00) 

1.20e-01(1.2e-02) 

4.95e-03(5.6e-04) 

1.39 (8.7e-02) 

1.42e-01(4.5e-02) 

2.19 (2.0e-01) 

3.84 (1.9e-01) 

2.48 (1.8e-01) 

6.88e+01(9.4e+00) 

6.95 (2.1e-01) 

2.19 (3.8e-01) 

1.12 (2.0e-01) 

5.67e-01(9.3e-02) 

9.79e-01(2.9e-01) 

5.96e-01(1.1e-01) 

6.62e-01(1.1e-01) 

6.40e-01(1.9e-01) 

1.08 (1.5e-01) 

5.53e-01(1.2e-01) 

3.39e+01(1.0e+01) 

4.63e-01(3.2e-02) 

3.46e+02(5.9e+01) 

1.04 (1.8e-01) 

3.58e-01(3.9e-02) 

5.54 (2.5e-01) 

9.76 (9.4e-01) 

7.12e-02(7.0e-03) 

1.26e-01(2.6e-02) 

1.15e-01(2.3e-02) 

2.76e-01(1.5e-01) 

3.21e-02(9.6e-03) 

1.07 (3.1e-02) 

2.36e-01(3.3e-01) 

4.15e-02(1.0e-02) 

3.41e-02(5.5e-03) 

7.31e-02(4.7e-03) 

1.03e-01(2.7e-02) 

3.69e-02(7.5e-03) 

3.60e-01(5.0e-02) 

7.19e-02(6.3e-03) 

2.35e-01(1.2e-01) 

1.24e-01(1.4e-02) 

4.61 (1.1) 

1.44e-01(2.5e-02) 

1.24e-02(2.0e-03) 

1.00e-02(1.4e-03) 

1.88e-01(6.0e-02) 

7.35e-02(6.7e-03) 

1.35e-01(4.3e-02) 

1.04e-01(2.4e-02) 

2.79e-01(1.6e-01) 

3.47e-02(1.2e-02) 

1.06 (4.1e-02) 

1.72e-01(2.8e-01) 

3.98e-02(8.3e-03) 

5.08e-02(9.2e-03) 

7.04e-02(6.3e-03) 

1.25e-01(2.7e-02) 

5.17e-02(1.6e-02) 

3.35e-01(5.4e-02) 

7.01e-02(5.8e-03) 

2.21e-01(1.1e-01) 

1.44e-01(3.0e-02) 

4.71 (1.1) 

1.75e-01(4.7e-02) 

1.53e-02(2.2e-03) 

1.41e-02(2.5e-03) 

2.59e-01(7.9e-02) 

hit rate 16/21 0/21 2/21 3/21 

 
  



TABLE IV. Mean and standard deviation value of HV metric on HMOHS, HMOHSG, MOGHS 

and MOHS 

 

 

HMOHS 

mean(std) 

HMOHSG  

mean(std) 

MOGHS 

mean(std) 

MOHS 

mean(std) 

ZDT1 

ZDT2 

ZDT3 

ZDT4 

ZDT6 

WFG1 

WFG2 

WFG3 

WFG4 

WFG5 

WFG6 

WFG7 

WFG8 

WFG9 

DTLZ1 

DTLZ2 

DTLZ3 

DTLZ4 

DTLZ5 

DTLZ6 

DTLZ7 

6.61e-01 (1.0e-4) 

3.28e-01(1.9e-04) 

5.13e-01(7.5e-04) 

6.07e-01(6.5e-02) 

4.01e-01(3.9e-03) 

4.01e-01(9.2e-02) 

5.54e-01(2.6e-03) 

4.93e-01(8.1e-04) 

2.10e-01(2.2e-04) 

2.12e-01(4.5e-05) 

2.01e-01(9.8e-03) 

2.10e-01(1.4e-04) 

2.97-01(1.3e-02) 

2.35e-01(1.6e-03) 

1.81e-01(2.7e-01) 

4.11e-01(5.1e-03) 

0 

4.16e-01(3.7e-03) 

9.34e-02(4.2e-05) 

0 

2.99e-01(3.9e-03) 

0 

0 

0 

0 

0 

2.90e-03(5.1e-03) 

3.59e-01(2.2e-02) 

3.20e-01(1.5e-02) 

1.32e-01(5.4e-03) 

1.11e-01(6.6e-03) 

7.40e-02(1.1e-02) 

1.08e-01(1.0e-02) 

1.17e-01(8.3e-03) 

1.26e-01(2.0e-02) 

0 

2.80e-02(1.9e-02) 

0 

0 

1.23e-03(2.3e-03) 

0 

0 

5.93e-01(8.8e-03) 

2.38e-01(1.3e-02) 

4.67e-01(7.4e-03) 

3.62e- 01(1.3e-01) 

3.93e-01(2.2e-03) 

1.73e-01(4.3e-03) 

5.53e-01(2.3e-03) 

4.91e-01(1.7e-03) 

2.09e-01(4.2e-04) 

2.14e-01(1.6e-03) 

1.67e-01(1.5e- 02) 

2.09e-01(3.8e -04) 

2.84e-01(2.0e -03) 

2.27e-01(1.8e -03) 

2.47e-01(2.4e-01) 

3.74e-01(5.0e-03) 

0 

3.84e-01(8.9e-03) 

9.03e-02(6.6e-04) 

9.22e-02(1.3e-04) 

2.91e-01(8.5e-03) 

5.92e-01(7.0e-03) 

2.38e-01(1.2e-02) 

4.68e-01(8.4e-03) 

3.53e-01(1.4e-01) 

3.93e-01(3.1e-03) 

1.74e-01(5.5e-03) 

5.51e-01(2.9e-03) 

4.90e-01(1.9e-03) 

2.08e-01(5.6e-04) 

2.16e-01(4.2e-03) 

1.65e-01(1.3e-02) 

2.08e-01(6.4e-04) 

2.84e-01(1.4e-03) 

2.26e-01(1.8e-03) 

2.92e-01(2.2e-01) 

3.76e-01(1.0e-02) 

0 

3.73e-01(9.6e-03) 

8.79e-02(1.1e-03) 

9.00e-02(4.6e-04) 

2.90e-01(7.4e-03) 

hit rate 17/21 0/21 1/21 2/21 

 

4.3 Comparison HMOHS with NSGA-II, SPEA2 and MOEA/D   

 

To further evaluate the performance of HMOHS, it is compared with the current state-of-the-art 

algorithms such as NSGA-II [4], SPEA2 [5] and MOEA/D [6]. The characteristic feature of NSGA-II 

developed by Deb et al. is that it uses a fast and non-dominated sorting and crowding distance estimation 

procedure. SPEA2 was presented by Zitler et al. In SPEA2 algorithm each individual has a fitness value 

which is the sum of its strength raw fitness and density estimation based on the distance to the k-th 

nearest neighbor. MOEA/D and its variants [40]-[44] invented by Q. Zhang et al. decomposes a multi-

objective problem into a number of scalar sub-problems and optimizes them simultaneously, and here 

we use MOEA/D [40] with differential evolution (DE [45]) strategy to compare with our proposal. To 

evaluate behavior of these algorithms with a fair comparison, the parameters of the algorithms should be 

set the same as possible as we can. 

In our experimental, the stopping criteria is 15,000 function evaluations for HMOHS, NSGA-II, 

SPEA2 and MOEA/D on ZDT and WFG test suite, while the stopping criteria is increased to 25,000 

function evaluations for DTLZ benchmarks since it is difficult to obtain exact PS for DTLZ test problems. 

The other parameter settings are shown in Table V. These algorithms are executed 30 runs for each test 

problem. Table VI-VIII present the comparative results of these algorithms in terms of mean and standard 

deviation values (i.e. Spread, Epsilon and HV) obtained by 30 independent runs. The values in bold 

represent the best results in Table VI-VIII.  

  



Table V. Parameters setting of HMOHS, NSGA-II, SPEA2 and MOEA/D algorithms 

  Parameterization used in NSGA-II 

Population Size 

Selection Scheme 

Recombination 

Mutation 

Evaluate solution 

100 for ZDT and WFG suites and 500 for DTLZ suites 

binary tournament selection 

simulated binary, Pc =0.9, crossover distribution ratio =20 

polynomial, Pm = 1.0/L, mutation distribution ratio =20 

Pareto based (i.e. rank and crowding distance) 

Parameterization used in SPEA2 
Population Size  

Selection Scheme 

Recombination 

Mutation 

Evaluate solution 

100 for ZDT and WFG suites and 500 for DTLZ suites 

binary tournament selection 

simulated binary, Pc=0.9, crossover distribution ratio =20 

polynomial, Pm =1.0/L, mutation distribution ratio =20 

Pareto based 

   Parameterization used in MOEA/D 

Population Size 

Selection scheme 

Recombination 

Mutation 

Evaluate solution 

100 for ZDT and WFG suites and 500 for DTLZ suites 

binary tournament selection 

Differential Evolution, CR=0.1, F=0.5 

polynomial, Pm = 1.0/L, distribution ratio =20 

Tchebycheff approach  

  Parameterization used in HMOHS 
Harmony memory size  

HMCR  

PAR  

Selection Scheme  

Recombination  

Mutation  

Evaluate solution 

100 for ZDT and WFG suites and 500 for DTLZ suites 

HMCRmax=0.9, HMCRmin=0.6 

PARmin=0.1, PARmax=0.5 

binary tournament selection 

simulated binary, Pc =0.9, crossover distribution ratio =20 

polynomial, Pm = 1.0/L, mutation distribution ratio =20 

Pareto based 

where L represents the number of decision variables 

Table VI presents the mean and standard deviation of the Spread-metric values in 30 runs. It is obvious 

from this table that HMOHS is much better than other three algorithms in terms of Spread-metrics on 

most test suite. Because HMOHS gets the best values in 17 of 21 test suite, while NSGA-II, SPEA2 and 

MOEA/D respectively obtain the best ones in 2, 2 and 3 benchmark problems. Furthermore, HMOHS 

outperforms the other compared algorithms on all bi-objective benchmarks, namely ZDT and DTLZ test 

suite. It indicates the front obtained by HMOHS algorithm has a more uniform distribution along the PF* 

than that by its counterparts on most test suite considered, especially for bi-objective problems.  

Table VII reveals that concerning Epsilon-metric values, HMOHS performs better than the other 

algorithms for most test suite. It suggests that HMOHS is better than that of its counterparts in terms of 

convergence on these benchmarks except ZDT3, WFG2, DTLZ1-4, and DTLZ6. With regard to 

convergence performance of these algorithms, we can state that HMOHS ranks the top; MOEA/D takes 

second place, followed by SPEA2 and NSGA-II. 

The HV-metric values, which are used to strengthen the results of the two metrics above, are listed in 

Table VIII. For HV-metric, HMOHS outperforms the compared algorithms since HMOHS can offer the 

best results (largest here) in 14 of 21 problems, whereas NSGA-II, SPEA2 and MOEA/D provide the 

best ones in 1, 2 and 4 test functions, respectively. Regarding coverage, HMOHS is in the first rank; 

MOEA/D comes in the second place; SPEA2 is the third; NSGA-II is rear. 

It is also observed that differences are very small on some benchmarks with regard to HV-metric. 

However, these tiny differences generate discernible differences in the Pareto fronts [38]. To graphically 

show our results, we plot in Figure 4 four fronts obtained by HMOHS, NSGA-II, SPEA2 and MOEA/D 

for problem ZDT6. The fronts are those having the best coverage (the largest value of HV) in 30 runs 

for that problem. We can observe that the front generated by HMOHS achieves an almost uniform 

distribution along PF* and perfect convergence toward PF*. It is clearly noticed that SPEA2 has the 

worst spread and convergence on this problem, and NSGA-II obtains the second worst spread and 

convergence among these algorithms. Regarding MOEA/D, its front has good convergence to PF, but it 

has not good diversity when 
1( )f x  is about equal to 0.6 where a gap exists. 



Table VI Mean and standard deviation value of spread metric on HMOHS, NSGA-II, SPEA2 

and MOEA/D 

 

 

HMOHS 

mean(std) 

NSGA-II 

mean(std) 

SPEA2  

mean(std) 

MOEA/D 

mean(std) 

ZDT1 

ZDT2 

ZDT3 

ZDT4 

ZDT6 

WFG1 

WFG2 

WFG3 

WFG4 

WFG5 

WFG6 

WFG7 

WFG8 

WFG9 

DTLZ1 

DTLZ2 

DTLZ3 

DTLZ4 

DTLZ5 

DTLZ6 

DTLZ7 

1.53e-01(1.3e-02) 

1.43e-01(1.5e-02) 

7.50e-01(7.1e-03) 

4.44e-01(1.6e-01) 

2.52e-01(2.6e-02) 

5.94e-01(1.1e-01) 

7.59e-01(4.8e-03) 

7.08e-02(1.2e-02) 

1.29e-01(1.4e-02) 

1.31e-01(1.1e-02) 

1.45e-01(2.2e-02) 

1.15e-01(1.2e-02) 

5.80e-01(4.1e-02) 

1.27e-01(1.8e-02) 

1.12(1.1e-01) 

6.79e-01(2.4e-02) 

1.02 (3.1e-02) 

6.60e-01(1.5e-02) 

3.96e-01(4.5e-02) 

8.32e-01(2.3e-02) 

7.85e-01(1.3e-02) 

3.87e-01(2.8e-02) 

3.75e-01(2.3e-02) 

7.77e-01(9.7e-03) 

6.63e-01(2.0e-01) 

5.00e-01(7.4e-02) 

7.18e-01(6.8e-02) 

7.94e-01(1.2e-02) 

3.65e-01(2.6e-02) 

3.63e-01(2.6e-02) 

3.94e-01(3.4e-02) 

3.87e-01(2.7e-02) 

3.81e-01(3.0e-02) 

6.67e-01(7.0e-02) 

3.56e-01(2.5e-02) 

1.20(5.0e-02) 

6.73e-01(2.9e-02) 

1.01 (3.2e-02) 

6.61e-01(2.6e-02) 

6.21e-01(3.4e-02) 

8.24e-01(2.9e-02) 

7.87e-01(2.2e-02) 

4.12e-01(7.4e-02) 

8.28e-01(1.5e-01) 

7.79e-01(2.9e-02) 

9.38e-01(3.7e-02) 

8.21e-01(7.8e-02) 

8.99e-01(8.1e-02) 

7.82e-01(1.1e-02) 

1.68e-01(1.5e-02) 

2.66e-01(1.5e-02) 

2.69e-01(1.7e-02) 

2.67e-01(2.8e-02) 

2.53e-01(2.3e-02) 

6.94e-01(6.4e-02) 

2.54e-01(2.0e-02) 

1.24(5.8e-02) 

5.75e-01(1.1e-02) 

9.84e-01(5.3e-02) 

5.82e-01(1.6e-02) 

6.21e-01(5.6e-02) 

8.66e-01(2.3e-02) 

8.32e-01(2.4e-02) 

7.16e-01(7.8e-02) 

9.42e-01(1.5e-01) 

1.01(4.1e-02) 

1.15(1.1e-01) 

3.13e-01(2.6e-01) 

1.10(1.5e-01) 

1.11(7.0e-03) 

3.47e-01(1.8e-03) 

5.79e-01(5.5e-02) 

4.60e-01(2.0e-02) 

4.20e-01(9.2e-03) 

4.27e-01(1.0e-02) 

6.59e-01(5.1e-02) 

4.52e-01(1.5e-02) 

1.24(7.0e-02) 

8.37e-01(1.9e-02) 

1.28(1.1e-01) 

1.03(7.9e-02) 

9.01e-01(4.2e-02) 

8.52e-01(1.6e-01) 

1.11(4.6e-02) 

hit rate 17/21 1/21 3/21 0/21 

 
TABLE VII. Mean and standard deviation value of epsilon metric on HMOHS, NSGA-II, SPEA2 

and MOEA/D 

 

 

HMOHS 

mean(std) 

NSGA-II 

mean(std) 

SPEA2    

mean(std) 

MOEA/D 

mean(std) 

ZDT1 

ZDT2 

ZDT3 

ZDT4 

ZDT6 

WFG1 

WFG2 

WFG3 

WFG4 

WFG5 

WFG6 

WFG7 

WFG8 

WFG9 

DTLZ1 

DTLZ2 

DTLZ3 

DTLZ4 

DTLZ5 

DTLZ6 

DTLZ7 

8.82e-03(9.8e-04) 

9.21e-03(1.3e-03) 

2.86e-02(7.7e-02) 

1.25e-01(1.0e-01) 

3.49e-02(6.9e-03) 

7.13e-01(3.6e-01) 

6.13e-01(3.3e-01) 

1.95e-02(2.8e-03) 

1.62e-02(9.2e-04) 

6.48e-02(2.2e-02) 

3.83e-02(2.0e-02) 

1.65e-02(2.0e-03) 

3.89e-01(1.4e-01) 

1.88e-02(2.8e-03) 

2.31(6.8e-01) 

6.98e-02(8.6e-03) 

3.66e+01(6.7) 

5.67e-02(1.1e-02) 

2.24e-03(2.3e-04) 

2.32 (1.2e-01) 

6.83e-02(1.7e-02) 

1.63e-02(1.8e-03) 

1.68e-02(1.9e-03) 

1.11e-02(1.9e-03) 

1.84e-01(1.2e-01) 

9.79e-02(1.8e-02) 

7.88e-01(2.4e-01) 

3.80e-01(3.9e-01) 

3.84e-02(5.3e-03) 

3.57e-02(5.0e-03) 

6.79e-02(1.6e-02) 

4.49e-02(1.9e-02) 

3.81e-02(8.6e-03) 

4.43e-01(1.1e-01) 

3.66e-02(5.4e-03) 

2.50 (7.9e-01) 

7.37e-02(8.0e-03) 

4.27e+01(7.0) 

6.26e-02(6.4e-03) 

4.05e-03(4.8e-04) 

2.73 (8.9e-02) 

2.53e-01(4.4e-02) 

4.47e-02(1.1e-02) 

5.16e-01(4.0e-01) 

1.15e-01(1.0e-01) 

1.46e-01(4.5e-01) 

6.95e-01(9.5e-02) 

1.34e-01(1.7e-01) 

4.60e-01(3.9e-01) 

2.78e-02(4.3e-03) 

3.12e-02(8.3e-03) 

7.78e-02(1.4e-02) 

4.61e-02(1.7e-02) 

3.55e-02(1.5e-02) 

5.48e-01(9.7e-02) 

3.63e-02(1.3e-02) 

1.49 (2.5e-01) 

4.07e-02(3.0e-03) 

4.48e+01(1.0e+01) 

4.21e-02(4.4e-03) 

5.47e-03(3.0e-03) 

2.88 (8.9e-02) 

4.93e-01(3.0e-02) 

1.76e-01(6.8e-02) 

5.44e-01(2.8e-01) 

4.63e-01(1.2e-01) 

1.84e-01(7.6e-01) 

2.27e-02(6.5e-02) 

8.92e-01(1.3e-01) 

3.31e-02(5.1e-03) 

3.13e-02(3.5e-03) 

8.39e-02(1.5e-02) 

8.53e-02(2.9e-03) 

2.44e-02(1.2e-03) 

2.67e-02(8.1e-04) 

3.84e-01(1.6e-01) 

3.38e-02(1.4e-03) 

9.17e-01(7.2e-01) 

5.83e-02(3.5e-03) 

9.31 (1.0e+01) 

1.33e-01(6.2e-02) 

9.01e-03(7.3e-04) 

6.92e-03(2.5e-03) 

2.75 (5.2e-01) 

hit rate 14/21 1/21 2/21 4/21 

 
  



TABLE VIII. Mean and standard deviation value of HV metric on HMOHS, NSGA-II, SPEA2 

and MOEA/D 

 

 

HMOHS 

mean(std) 

NSGA-II 

mean(std) 

SPEA2                                       

mean(std) 

MOEA/D 

mean(std) 

ZDT1 

ZDT2 

ZDT3 

ZDT4 

ZDT6 

WFG1 

WFG2 

WFG3 

WFG4 

WFG5 

WFG6 

WFG7 

WFG8 

WFG9 

DTLZ1 

DTLZ2 

DTLZ3 

DTLZ4 

DTLZ5 

DTLZ6 

DTLZ7 

6.83e-01(9.3e-04) 

3.25e-01(1.0e-03) 

5.47e-01(8.1e-04) 

6.14e-01(7.1e-02) 

4.83e-01(4.6e-03) 

3.62e-01(9.3e-02) 

5.54e-01(2.6e-04) 

4.93e-01(6.6e-04) 

2.10e-01(1.8e-04) 

2.11e-01(5.0e-05) 

1.92e-01(1.4e-02) 

2.10e-01(2.1e-04) 

2.06e-01(3.3e-03) 

2.26e-01(5.3e-04) 

5.35e-02(1.2e-01) 
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Figure 4. Approximated fronts of these algorithms when solving ZDT6 

 

4.4 Analysis of convergence speed  
 

In this section, we mainly focus on investigating convergence speed of HMOHS, NSGA-II, SPEA2 

and MOEA/D when solving ZDT, WFG, and DTLZ test suites except DTLZ3, DTLZ5 and DTLZ6 since 

HV-metric values by algorithms on DTLZ3, DTLZ5 and DTLZ6 are close to zero value.  

To make a fair comparison among different algorithms, we use the following parameters. The 

stopping condition is set to 25,000 function evaluation numbers for above algorithm on all the 
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benchmarks, and the setting of the other parameters in these four algorithms is the same as in Table V. 

To evaluate quality of front obtained by each algorithm in our experiment, here we only employ HV-

metric to measure the performance of each algorithm since this metric is a comprehensive metric of 

convergence and diversity in a sense. The above algorithms have been run 30 times independently on 

each benchmark problem and then HV-metric mean value of each function evaluation is calculated 

during the whole search. And we adopt the number of function evaluation to track trend of mean HV-

metric in 30 runs. It should be noted that convergence speed represents speed of high quality solution 

obtained rather than only convergence such as Epsilon-metric.  

 

 
Figure 5. Convergence curve of these algorithms when solving benchmarks 

Figure 5. presents the evolution of mean HV-metric value of the current population with the number 

of function evaluations in each algorithm for each test problem. These curves suggest that convergence 

speed of HMOHS, in terms of the number of the function evaluations, is faster than that of its counterparts 

in maximizing the HV-metric value for ZDT suite.  

We can conclude from this observation that result of plots is consistent with our view that a hybrid 

MOHS by introducing GA operator effectively enhance convergence speed to PF*.  

 

5 CONCLUSION 
 
We have proposed HMOHS, a hybrid HS with GA algorithm to solve MOPs. In HMOHS, a new self-

adaptive operator, which replaces role of BW, is used to HMOHS. This self-adaptive mechanism can 

make candidate solution automatically choose suitable value at an appropriate time during the entire 

evolution process. Moreover, each solution has two different features operation (i.e. GA and HS) to guide 

candidate solution to converge toward Pareto optimal front, explore new promising areas and exploit 

local areas found. In addition, dynamical HMCR is employed to control HS and GA operation in 

HMOHS for enhancing convergence speed to Pareto optimal front, and maintaining diversity in solutions. 

HMOHS have been compared to its variants or previous version. Three metrics were used to assess 

the performance of the algorithms on 21 test functions. The obtained results suggest that HMOHS clearly 

outperforms its counterparts. To further assess how competitive the most promising HMOHS is, we have 

compared it against three state-of-the-art MOEAs such as NSGA-II, SPEA2 and MOEA/D for solving 

MOPs, and then convergence speed of each algorithm on test problems has been analyzed by using graph 

display. In the context of problems, metrics, and parameter settings used, HMOHS is better than the other 
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three algorithms on most test problems. Finally, the HMOHS with other evolutionary strategies and its 

application to solve real-world applications are our future work. 
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