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Abstract: The feasibility design method with multidisciplinary and multi-objective optimization is applied in the research of 

lightweight design and NVH performances of crankshaft in high-power marine reciprocating compressor. Opt-LHD is explored to 

obtain the experimental scheme and perform data sampling. The elliptical basis function neural network (EBFNN) model considering 

modal frequency, static strength, torsional vibration angular displacement and lightweight design of crankshaft is built. Deterministic 

optimization and reliability optimization for lightweight design of crankshaft are operated separately. Multi-island genetic algorithm 

(MIGA) combined with multidisciplinary co-optimization method is used to carry out the multi-objective optimization of crankshaft 

structure. Pareto optimal set is obtained. Optimization results demonstrate that the reliability optimization which considers the 

uncertainties of production process can ensure product stability compared with deterministic optimization. The coupling and 

decoupling of structure mechanical properties, NVH and lightweight design are considered during the multi-objective optimization of 

crankshaft structure. Designers can choose the optimization results according to their demands, which means the production 

development cycle and the costs can be significantly reduced.  
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1. Introduction 

New marine reciprocating compressors must have high 

power, high pressure ratio, slight vibration and 

environmentally-friendly with the development of marine 

natural gas boosting and gathering [1]. Therefore, the effect of 

each component of the compressors on its overall performance 

should be investigated in detail. Crankshaft systems of 

reciprocating compressors have an effective influence on 

compressor performance, being the main part responsible for 

vibration production [2]. 

The high-power reciprocating compressors are designed to 

run onshore; accordingly, the support of compressors cannot 

match the crankshaft structure parameters and there are some 

drawbacks such as loud noise and high vibration intensity 

caused by gas force, reciprocating inertia force and centrifugal 

force when it is used offshore [3-5]. Consequently, the 

parameters of crankshaft structure should be changed. To study 

parameters effect will face longer time period, higher 

experimental cost and complicated verification process through 

the experiment of compressor [6].  

The crankshaft structure is a complex engineering system 

involving structural mechanics, mechanical vibration and noise 

and man-machine-environment engineering. The crankshaft 

structure design is a complex multidisciplinary and multi-stage 

design process relating to high correlation and coupling 

between all disciplines. The whole process can be described by 

a complex function. The optimized parameters combination of 

crankshaft structure is obtained by iterating and optimizing. 

Consequently, it is a key factor to choose a suitable algorithm to 

solve this issue. Studies on crankshaft of reciprocating 

compressors mainly focus on vibration and stress analyses 

[7-10].Although stress analyses of crankshafts are available in 

literature, there are few studies on the optimization of 

crankshaft. A.Almasi [6] optimized the configuration of the 

compressor critical components to improve the performance 

and reliability. Bo-Suk Yang et al. [11] introduced a new 

approach to analyses vibration performance of small 

reciprocating compressor on the basis of artificial neural 

networks and support vector machines. And the classification of 

compressor is achieved. Emesto Benini* [12] proposed a 

multi-objective optimization algorithm in transonic compressor 

rotor structure and improved the pressure ratio. Simon Ho et al. 

[13] improved the crankshaft reliability by Monte Carlo 

simulation on the basis of the finite element model. Although 

the algorithms mentioned earlier are effective to obtain the 

optimal solution, comprehensive design is difficult to achieve 

by single discipline. Therefore, multidisciplinary design 

optimization (MDO) theory is necessary to achieve the 

comprehensive design of crankshaft [14-15]. 

Although multiple parameters affect the performance of 

compressor, the amount of data obtained by compressor 

experiment is limited. The EBFNN theory is good at solving 

small sample learning problems [16-17]. Due to its strong 

ability of nonlinear function approximation and excellent 

generalization capacity, EBFNN has been widely used in the 

field of industrial engineering. 



 

In this paper, the coupling and interdisciplinary 

relationships of mechanical properties, NVH and lightweight 

are considered and the MDO technology roadmap of the 

reciprocating compressor was proposed on the basis of virtual 

proving ground (VPG) technology. Co-optimization based on 

EBFNN and Multi-Island Genetic Algorithm is applied to the 

multi-objective optimization of crankshaft structure in order to 

gain the Pareto optimal solution set. 

2. MDO of the crankshaft structure 

The MDO theory is applied in crankshaft structure design 

on the basis of VPG. The flow chart of the enforceable 

technology roadmap is shown in Figure 1. 
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FIGURE 1: MDO Technology Roadmap on the basis of VPG 

The crankshaft MDO issues mainly focus on the effective 

optimization strategy to achieve concurrent design of 

multidisciplinary subsystems and obtain the satisfactory 

solution. The strategy can combine the knowledge from 

different subjects with optimize algorithm and develop an 

effective method to solve the complex problems [18-19]. 

The MDO optimization framework can be divided into 

single-stage and multiple-stage. The single-stage optimization 

framework is composed of multidisciplinary feasible method 

(MDF) and individual discipline feasible method (IDF). The 

multi-stage optimization framework consist of concurrent 

subspace optimization (CSSO)、 co-optimization (CO) and 

bi-level integrated (Bliss).  

In this paper, the CO is mainly studied.CO is a multi-stage 

MDO algorithm on the basis of the optimization algorithm 

under consistency constraints and divide the crankshaft MDO 

issues into one system-level optimization and multiple 

subsystem-level optimization. 

The system-level optimization objective of crankshaft can 

be expressed as: 

min    ( )F Z                        

s.t.   ( )iJ Z      1,2, ,i n   （1） 

The subsystem-level optimization objective of crankshaft 

is listed as: 

min    
2 2

( )i i i i iJ Z X Z Y Z           

s.t.    ( ) 0uG Z      1,2, ,u p         

( ) 0vH Z      1,2, ,v q   （2） 

The meaning of the symbols in the formula is shown as 

follows: 

Xi: design variable of i subsystem 

Yi: state variable of i subsystem 

Zi: target expectation of system-level design variable 

F: system-level objective function 

Ji(Z): objective function of i subsystem 

Gu(Z): inequality constraint of i subsystem 

Hv(Z): equality constraint of i subsystem 

p: quantity of the corresponding function 

q: quantity of the corresponding function 

ε: slack variable 

3. Multi-objective optimization problems and solving 

3.1. Multi-objective optimization problem. Multi-objective 

optimization problem(MOP) of crankshaft can be represented as： 

min  1 2( ) ( ( ), ( ), , ( ))ny F x f x f x f x            

s.t.    ( ) 0ig x     1,2,i l                

( ) 0jh x     1 , 2 ,j m               

L Ux x x     1 2( , , , )rx x x x X   （3）  

The meaning of the symbols in the formula is shown as 

follows: 

   y: target vector, which can represent the optimization 

objectives of mechanical properties, NVH and other subsystems 

of the crankshaft 

   gi(x): equality constraint of i subsystem 

hj(x): equality constraint of i subsystem 

x: decision vector 

xL: lower bound of decision vector 

xU: upper bound of decision vector 

X: decision space formed by decision vector 

l: quantity of the corresponding function 

m: quantity of the corresponding function 

n: quantity of the corresponding function 

r: quantity of the corresponding function 

With the given crankshaft MOP issue, the Pareto optimal 

solution can be defined as: if and only if there exists no feasible 

solution (xB belongs to X) which makes F(xB) better than F(xA), 



 

will xA belongs to X be one of the Pareto optimal solutions. 

Hence, the optimal Pareto set can be represented as: 

                            （4） 

Inevitably, the MDO of the crankshaft is accompanied by 

the MOP of the crankshaft. MOP of the crankshaft cannot 

achieve best possible optimizations of all objectives 

simultaneously and arbitrary solution of Pareto set will possibly 

become the satisfactory solution. 

3.2. Solving of MOP. The evaluation methods of MOP can be 

divided into global optimization algorithms and local 

optimization algorithms. The global optimization algorithms 

include genetic algorithm, simulated annealing algorithm, 

particle swarm optimization and ant colony algorithm. Due to 

their high capability of global search, high speeds of 

convergence and search results independent on starting point, 

the global optimization algorithms are capable of solving high   

dimensional and non-linear problems. But there exits higher 

time complexity and sometimes unsatisfactory local 

optimization effect [21-23]. The local optimization algorithms 

include constraint algorithm, weighting algorithm, distance 

function algorithm and gradient descent algorithm. The local 

optimal optimization algorithms mentioned earlier have a strong 

ability in finding the local optimal solution, but it is difficult to 

choose the starting point of high dimensional and non-liner 

problems [24-25]. Hence, multi-island genetic algorithm is 

chosen to solve the application issue. The multi-island 

algorithm can maintain optimal solution diversity and improve 

the local optimization effect by inter-island migration on the 

basis of traditional genetic algorithm [26]. The flow chart of 

MIGA is shown in Figure 2. 
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FIGURE 2:Flow chart of MIGA 

4. Multi-objective optimization of Crankshaft 

4.1. NVH Simulation of Crankshaft. The modal analysis is an 

important part of dynamic analysis in reciprocating compressor 

machine system, which can help us understand the dynamic 

characteristic of the system. The natural frequency of crankshaft 

is usually calculated to avoid resonances during use in the 

design of NVH. Severe deforming parts of crankshaft are 

observed to judge the strength of the corresponding structure, 

which may become noise vibration source or main transfer path 

and should be modified early. 

There are 269612 entity units and 452154 nodes on the 

finite element model of crankshaft NVH. The characteristic of 

NVH is studied by crankshaft modal analysis and torsional 

vibration. 

The crankshaft modal is computed by ANSYS under free 

boundary. Therefore, the first-order natural frequency is 

41.413Hz. The second-order natural frequency is 43.54Hz. 

In the process of the torsional vibration analysis, the modal 

superposition method is used to simplify the finite element of 

crankshaft. The elastic deformation of the structure is solved 

approximately by linear combination of suitable modes which 

can be shown as follows: 

[ ] [ ][ ]u q              （5） 

The meaning of the symbols in the formula is shown as 

follows: 

[u]:displacement matrix 

      : modal shape function matrix 

[q]:vector of modal coordinates 

An elastic body contains two types of nodes, interface 

nodes where forces and boundary conditions interact with the 

structure during multi-body system simulation(MSS),and 

interior nodes. In MSS the position of the elastic body is 

computed by superposing its rigid body motion and elastic 

deformation. In ADAMS, this is performed using “Component 

Mode Synthesis” technique based on Craig-Bampton method 

[27-28]. The component modes contain static and dynamic 

behavior of the structure. The modal transformation between 

the physical DOF and the Craig-Bampton modes and their 

modal coordinates is described by [29]: 

1

0
[ ]

CB

C N N

I qu
u

qu  

   
     
    

       （6） 

The meaning of the symbols in the formula is shown as 

follows: 

uB: column vectors of boundary DOF 

u1: column vectors of interior DOF 

I: identity matrix 

0: zero matrix 

φC: matrix of physical displacements of the interior 

DOF in the constraint modes 

φN: matrix of physical displacements of the interior 

DOF in the normal modes 

qC: column vector of modal coordinates of the 

constraint modes 

qN: column vector of modal coordinates of the fixed 

boundary normal modes. 

To obtain decoupled set of modes, constrained modes 



 

and normal modes are orthogonalized.  

The crankshaft system model is shown in Figure 3. 

Elastic 3D solid crankshaft model of reciprocating compressor 

is obtained in ANSYS using modal superposition method. First, 

3D solid model of the crankshaft is imported to ANSYS  and 

finite element model of the crankshaft is obtained. Flexible 

crankshaft model is obtained through modal synthesis 

considering the first 30 fixed boundary normal modes. Then, 

this model is imported to ADAMS/View and 3D finite element 

model is run with ADAMS. 

 

FIGURE 3:Model of crankshaft system  

4.2. Strength of Crankshaft. The boundary condition of 

crankshaft strength analysis is shown in Figure 4. The radial 

and axial freedom of main bearings from ① to ⑥  are 

constrained. Forces in a reciprocating compressor can be 

divided into gas forces, piston lateral impact forces and inertia 

forces. The gas forces are applied on the prismatic pairs of 

piston. Then, excitation force and torque acted on the crankpin 

from Ⅰ  to Ⅵ  are obtained by MSS. In the calculation 

example, the rotate speed of crankshaft is set to 994r/min, the 

manifold pressure is set to 2.0Mpa and the exhaust pressure is 

set to 6.0Mpa. The type of cylinder is double-acting. 

1 2 3 4 5 6

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ  

FIGURE 4: Boundary condition of crankshaft strength 

analysis  

5. Multidisciplinary optimization of Crankshaft 

The deterministic optimization, reliability optimization and 

multi-objective optimization are operated independently on the 

basis of EBFNN and CO. The flow chart of MDO is shown in 

Figure 5. 

5.1. System Decomposition. Systems in crankshaft structure can 

be divided into mass, NVH and strength subsystem. The NVH 

subsystem includes modal analysis and torsional vibration. 

5.2. Design Variable. The structure of crankshaft system has an 

important effect on the torsional vibration, strength, natural 

frequency and mass of crankshaft. As the crankshaft is 

constrained by the dimension and assembly of connecting rod, 

frame and other parts, the dimension of crank journals, 

crankpins and bore spacing cannot be changed in this 

calculation example. Consequently, transitional fillet (x1), oil 

passage (x2) and shape parameters of weight-lowing holes (x3, 

x4, x5) are chosen as the design variables, which is shown in 

Figure 6. 
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 FIGURE 5:Flow chart of crankshaft system MDO 
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 FIGURE 6:Design Variables of MDO 

5.3. Experiment Design. Opt-LHD is adopted to obtain the 

experimental scheme and perform data sampling. The elliptical 

basis function neural network (EBFNN) model considering 

modal frequency, static strength, torsional vibration angular 

displacement and lightweight design of crankshaft is built. The 



 

experimental scheme is listed in Table 1. 

Targets in NVH sub system include first-order modal 

frequency (f1), second-order modal frequency (f2) and the 

maximum torsional angular vibration over a period time (θmax). 

Targets in strength sub system includes the maximum load on 

the main bearing over a period (F1, F2, F3, F4, F5, F6) and the 

maximum stress over a period time (σmax). Mass of the 

crankshaft (m) is the target of the mass sub system. 

TABLE 1: Experimental scheme based on Opt-LHD 

Sample 

Design Variables 

x1 x2 x3 x4 x5 

mm mm mm mm mm 

1 9.18 16.53 46.84 38.42 75.0 

2 7.82 14.63 40.53 35.26 72.89 

3 7.61 16.74 31.05 40.53 65.53 

4 7.71 17.58 45.79 39.47 70.79 

5 8.87 14.84 42.63 41.58 55.0 

6 8.34 15.68 50.0 33.16 63.42 

7 7.5 15.47 44.74 45.79 60.26 

8 8.97 18.0 34.21 43.68 68.68 

9 9.39 17.37 43.68 34.21 61.32 

10 8.45 16.32 33.16 50.0 57.11 

11 8.66 14.21 48.95 44.74 69.74 

12 9.08 16.11 30.0 36.32 59.24 

13 8.55 16.95 35.26 30.0 71.84 

14 9.5 15.26 37.37 46.84 66.58 

15 8.03 17.79 41.58 37.37 56.05 

16 9.29 14.42 39.47 32.11 67.63 

17 7.92 15.05 36.32 31.05 58.16 

18 8.24 14.0 32.11 42.63 64.47 

19 8.76 17.16 47.89 47.89 62.37 

20 8.13 15.89 38.42 48.95 73.95 

The times of training is set to 20 based on the parallel 

computing. The result is listed from Figure 7 to Figure 11. 
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FIGURE 7:Result of crankshaft mass 
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FIGURE 8: Result of modal frequency 
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FIGURE 9: Result of the maximum of torsional angular 

vibration over a period time 
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FIGURE 10: Result of the maximum stress over a period time 
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FIGURE 11: Result of main bearing load over a period time 

5.4. Surrogate Model. Each response is mapped to elliptical 

basis function surrogate model on the theory of the elliptical 

basis function neural network. It is shown in Figure12. 
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FIGURE 12:EBFNN model of crankshaft 

The elliptical basis function neural network including h 

input parameters, n hidden-layer nodes and m output parameters 

can be described by: 

( 1)

1

( ) [ ( )]
n

m mi i m n

i

y X v x  



      （7） 

The meaning of the symbols in the formula is shown as 

follows: 

x:design variable 

αmi: link weight between ith hidden-layer node and mth 

output parameter 

vi(x):base function by using Mahalanobis distance, 

which can be described by: 



 

1( ) ( ) ( )T

i i iv x x x S x x     （8） 

The meaning of the symbols in the formula is shown as 

follows: 

S: covariance matrix, which can be described by: 

1

1
( )( )

n
T

i i

i

S x x
n

 


        （9） 

Here, μ is the sample data center. 

Having gained output responses y=(y(1), y(1)…y(n)，0) 

corresponding to n samples, the connection matrix can be 

described by: 

   
 
             

   
             

  

  

 

  

    （10） 

The tan-sigmoid function is used in this neural network. 

Hence, ideal output results should be close or equal to 1. The 

normalization processing of experiment data is carried out, 

which can be described by: 

min

max min

Y =0.1 0.8 i i
i

i i

y y

y y


 


      （11） 

The meaning of the symbols in the formula is shown as 

follows: 

Yi: output values of normalization neural network 

yi: experimental data 

yimin: the minimum experimental data 

yimax: the maximum experimental data 

The elliptical basis function surrogate model between 

design variables and its analysis target can be solved, 

combining formula (6) to (11). The response surface of mass, 

torsional angular vibration and the maximum stress are plotted 

in Figures.13-15. 
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FIGURE 13:Response surface of mass normalization 
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FIGURE 14:Response surface of the maximum stress 

normalization 
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FIGURE 15:Response surface of torsional angular vibration 

normalization 

As the elliptical basis function surrogate model 

between input variables and its analysis targets cannot be 

described by a specific function, correlation coefficients (R2) 

are used to evaluate the degree of approximation between each 

model. The better the fitting of the surrogate model is, the 

closer the R2 is to 1.The correlation coefficients can be 

described by: 

2

2 1

2

1

( )

1

( )

n

i

i

n

i

i

y Y

R

y y






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




       （12） 

The meaning of the symbols in the formula is shown as 

follows: 

y : average of sample response 

 n: experiments 

The fitting of the surrogate model can be solved by 

formula (11) and formula (12).The correlation coefficient 

values of the elliptical basis function surrogate model 

corresponding to crankshaft mass, torsional angular vibration 

and the maximum stress over a period time are more than 0.90. 

The results show that the surrogate model of the elliptical 

function can truly reflect function mapping between design 

variable and analysis objective. The approximate model 

corresponding to design variable is precise and can be used to 

optimize. 

5.5. Single-object lightweight optimization of crankshaft. The 

deterministic system-level optimization objective can be 

represented as: 

min     M                           

s.t.     ( )iJ Z       1,2, ,i n  （13） 

The deterministic subsystem-level optimization objective 

can be represented as: 

min    
2

( )i i iJ Z X Z                  

s.t.    max [ ]                        

          max [ ]             

0i iF F         1,2, ,6i          



 

jL j jUX X X    1 , 2 , , 5j   （14） 

The meaning of the symbols in the formula is shown as 

follows: 

ε:10-5 

[θ]: allowable torsional angular vibration 

[σ]: allowable stress 

Xj: design variable of crankshaft, j=1,2,3,4,5 

xjL: lower bound of design variable 

xjU: upper bound of design variable 

Fi0: initial maximum load on main bearing over a 

period time, i=1,2,3,4,5,6 

In the design of crankshaft structure, it is uncertain 

because of structure parameters, system forecast model, 

sampling technology, judgments criterion and human factors. 

Accordingly, reliability optimization is adopted to control and 

eliminate system uncertainty.  

The reliability system-level optimization model can be 

represented as : 

min     M                         

s.t.     ( )iJ Z       1,2, ,i n   （15） 

The reliability subsystem-level optimization objective can 

be represented as: 

min    
2

( )i i iJ Z X Z               

s.t.   
max[ [ ]] ( ) 0P              

            
max[ [ ]] ( ) 0P               

 0[ ] ( ) 0i iP F F      1 , 2 , , 6i          

jL j jUX X X        1,2, ,5j   （16） 

The meaning of the symbols in the formula is shown as 

follows: 

P(•): probability of failure constrains 

β: reliability index 

Ф(β): first-order estimate of reliability 

Ф(•): obeying the normal distribution 

The determined optimization and reliability optimization 

are operated independently on the basis of MIGA. The 

advanced options of MIGA are listed in Table 2. 

TABLE 2:Advanced options of MIGA 

Options Parameter setting 

Sub-Population Size 20 

Number of Islands 10 

Number of Generations 50 

Rate of Crossover 0.8 

Rate of Mutation 0.0075 

Rate of Migration 0.25 

Interval of Migration 5 

Relative Tournaament Size 0.5 

Elite 1.0 

The initialization, range and optimization results of each 

design variable are listed in Table 3. 

TABLE 3:Design variables and optimization results 

Variables 

 and 

response 

Initialization 
Upper 

bound 

Lower 

bound 

Deterministic 

optimal 

results 

Reliability 

optimal 

results 

x1/mm 8.0 9.5 7.5 7.5 7.76 

x2/mm 16.0 18.0 14.0 17.9 16.9 

x3/mm 40.0 50.0 30.0 49.9 48.1 

x4/mm 40.0 50.0 30.0 49.9 46.3 

x5/mm 65.0 75.0 55.0 71.0 55.2 

m/kg 846 — — 838.8 840.1 

The optimization results show that the weight of the 

crankshaft is reduced 7.2Kg, which account for 0.85% of the 

initial mass. However, the uncertain factors are not considered. 

The weight of the structure is reduced 5.9Kg through reliability 

optimization. The reliability optimization not only can achieve 

the lightweight of the crankshaft, but also ensure the reliability 

and robustness in engineering quality. 

5.6. Multi-object optimization of MDO of crankshaft structure. 

According to formula (3), multi-objective optimization problem 

can be represented as: 

min  
1 2( ) ( ( ), ( ), , ( ))ny F x f x f x f x            

s.t.  
jL jUx x x    1 , 2 , , 5j          （17） 

Here, fi(x)(i=1,2,…,n) is the analysis target of designer, 

which can represent crankshaft mass, first-order modal 

frequency, second-order modal frequency, torsional angular 

vibration, the maximum stress over a period time or the 

maximum main bearing load over a period time. 

The range of the design variables and the optimization 

objectives need to be determined by actual production. MOP 

can be defined as tri-objective optimization when there are two 

optimization objectives in formula (17).Formula (17) can be 

represented as formula (18) where the torsional angular 

vibration and the maximum stress need to be optimized. 

min  2 2 1 1 2 2( ) ( ) ( )y F x w f x w f x              

s.t.  
jL jUx x x    1 , 2 , , 5j         （18） 

Here, (w1，w2) is the weighting factor of f1(x) and f2(x). 

Figures.16-18 show the bi-object Pareto set of different 

weight values. Figure 19 shows the tri-object Pareto set which 

regards the mass, the torsional angular vibration and the 

maximum stress over a period time as the optimization goal. 
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FIGURE 16:Pareto set with weight value(0. 5,0.5) 
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FIGURE 17:Pareto set with weight value(0.2,0.8) 
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FIGURE 18:Pareto set with weight value(0.8,0.2) 
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FIGURE 19:Pareto set with three optimization objects 

In Figs 16-18, maximum stress increases with decreasing 

torsional angular vibration over a period time. Pareto set has 

changed with different weight values. Appropriate weight value 

need to be determined by the requirement of the actual 

production. Then, the Pareto set is obtained and designers can 

choose the satisfactory optimization results. 

In Figure 19, the weight value is set to (1,1,1). The values 

of mass, torsional angular vibration and maximum stress over a 

period time are expected to achieve an optimal result. However,  

the paradoxical relationships are inevitably produced because 

of the coupled interactions. The improvement of one object is 

often at the expense of the decline of the other two. Appropriate 

weight value need to be determined by the requirement of the 

actual production. Then, the Pareto set is obtained and designers 

can choose the satisfactory optimization results. 

5.Conclusions 

(1) The multidisciplinary optimization considering the 

crankshaft modal, torsional angular vibration, maximum stress 

over a period time and maximum load on the main bearings is 

operated on the basis of multi-island genetic algorithm, which 

can effectively improve the comprehensive property of the 

crankshaft.  

(2) The parallel computing in multidisciplinary 

optimization is operated on the basis of the combination of 

elliptical basis function neural network theory and 

co-optimization method, which can enhance the optimization 

efficiency, so as to reduce product development cycle and costs. 

(3) During the design optimization process of the 

crankshaft structure, the reliability design is combined with the 

co-optimization method. And the optimization of the crankshaft 

is operated on the basis of multi-island genetic algorithm, 

combined with design of experiment. The optimization not only 

can control the system uncertainty, but also ensure the 

reliability and robustness of the final optimal results of the 

crankshaft structure. 
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