夏奇
  •        姓名:夏奇

           电话:027-87559544

           职称:教授

           邮箱:qxia@mail.hust.edu.cn

个人基本情况

    奇(Xia QiProfessor华中科技大学机械学院教授、博士生导师华中科技大学机械专业学士、硕士,香港中文大学自动化与计算机辅助工程专业博士。主要从事结构拓扑优化理论与方法研究。2018教育部自然科学一等奖,2017年获湖北省杰出青年基金。主持国家自然科学基金项目3项。第一通讯作者SCI论文35篇,获SCI他引600余次。


主要研究方向

结构拓扑优化设计

仿生设计与制造

 

开设课程

数字电路

微机原理

 

近年的科研项目、专著与论文、专利、获奖

Google Scholar主页

https://scholar.google.com/citations?hl=zh-CN&user=-dSQbDEAAAAJ 

科研项目:

[1] 主持国家自然科学基金面上项目“纤维曲线铺放变刚度结构优化设计的水平集方法”(2020-2023

[2] 主持国家自然科学基金面上项目结构与其表面功能器件的布局优化及基于水平集的多类型表面优化方法”(2016-2019

[3] 主持国家自然科学基金青年项目“基于表面纳米褶皱的微纳分级结构仿生制造工艺研究”(2012-2014

[4] 主持湖北省自然科学基金杰出青年项目“纤维复合材料结构的优化设计方法”(2017-2020)

[5] 主持湖北省自然科学基金项目“基于褶皱的表面增强拉曼散射基底制造工艺”2015-2016

[6] 主持湖北省自然科学基金项目“点态应力约束下连续体拓扑优化的水平集方法及应用”(2009-2010

[7] 主持教育部高等学校博士学科点专项科研基金项目“基于可控纳米褶皱的微纳分级结构仿生制造工艺研究”(2012-2014


授权的发明专利:

[1]  一种稳定成孔的改进水平集拓扑优化方法 ZL201810797119.4 夏奇、田野、史铁林

[2]  一种基于测地线距离的带孔复合材料结构设计优化方法 ZL201810456168.1 夏奇、田野、史铁林

[3]  一种基于Shepard插值的曲线纤维复合结构设计瀑布型多级优化方法 ZL201710951370.7 夏奇、田野、史铁林

[4] 一种基于Shepard插值的纤维增强复合材料结构优化方法 ZL201710758619.2 夏奇、史铁林

[5] 一种基于水平集拓扑优化的局部模态识别方法 ZL201610957089.X 夏奇、李振华、史铁林


代表性著作:

[1]  Liu Hui, Zong Hongming, Shi Tielin, Xia Qi(*), M-VCUT level set method for optimizing cellular structures, Computer Methods in Applied Mechanics and Engineering, 2020, 367:113154.

[2]  Xia Qi(*), Shi Tielin, Generalized hole nucleation through BESO for the level set based topology optimization of multi-material structures, Computer Methods in Applied Mechanics and Engineering, 2019, 355:216–233.

[3]  Xia Qi(*), Shi Tielin, Liang Xia, Stable hole nucleation in level set based topology optimization by using the material removal scheme of BESO, Computer Methods in Applied Mechanics and Engineering, 2019, 343:438–452.

[4]  Xia Qi(*), Shi Tielin, Optimization of structures with thin-layer functional device on its surface through a level set based multiple-type boundary method, Computer Methods in Applied Mechanics and Engineering, 2016, 311:56–70.

[5]  Xia Qi(*), Shi Tielin, Topology optimization of compliant mechanism and its support through a level set method, Computer Methods in Applied Mechanics and Engineering, 2016, 305:359–375.

[6]  Xia Qi, Wang Michael Yu, Shi Tielin(*), Topology optimization with pressure load through a level set method, Computer Methods in Applied Mechanics and Engineering, 2015, 283:177-195.

[7]  Xia Qi(*), Shi Tielin, Constraints of distance from boundary to skeleton: For the control of length scale in level set based structural topology optimization, Computer Methods in Applied Mechanics and Engineering, 2015, 295:525-542.

[8]  Xia Qi, Wang Michael Yu, Shi Tielin(*), A level set method for shape and topology optimization of both structure and support of continuum structures, Computer Methods in Applied Mechanics and Engineering, 2014, 272:340-353.

[9]  Tian Ye, Pu Shiming, Zong Zihao, Shi Tielin, Xia Qi(*)Optimization of variable stiffness laminates with gap-overlap and curvature constraints, Composite Structures, 2019, 230: 111494.

[10] Xia Qi(*), Shi Tielin, A cascadic multilevel optimization algorithm for the design of composite structures with curvilinear fiber based on Shepard interpolation, Composite Structures, 2018, 188:209-219.

[11] Xia Qi(*), Shi Tielin, Optimization of composite structures with continuous spatial variation of fiber angle through Shepard interpolation, Composite Structures, 2017, 182:273–282.

[12] Xia Qi(*), Shi Tielin, Xia Liang, Topology optimization for heat conduction by combining level set method and BESO method. International Journal of Heat and Mass Transfer, 2018, 127:200–209.

[13] Xia Qi, Shi Tielin(*), Liu Shiyuan, Wang Michael Yu, Shape and topology optimization for tailoring stress in a local region to enhance performance of piezoresistive sensors, Computers & Structures, 2013, 114-115:98-105.

[14] Xia Qi, Shi Tielin, Liu Shiyuan, Wang Michael Yu(*), A level set solution to the stress-based structural shape and topology optimization, Computers & Structures, 2012, 90-91:55-64.

[15] Li Zhenhua, Shi Tielin, Xia Qi(*). Eliminate localized eigenmodes in level set based topology optimization for the maximization of the first eigenfrequency of vibration, Advances in Engineering Software, 2017,107:59–70.

[16] Xia Qi, Wang Michael Yu(*), Topology optimization of thermoelastic structures using level set method, Computational Mechanics, 2008, 42(6):837-857.

[17] Xia Qi, Wang Michael Yu(*), Simultaneous optimization of the material properties and the topology of functionally graded structures, Computer-Aided Design, 2008, 40(6):660-675.

[18] Cai Jiandong, Xia Qi(*), Luo Yangjun, Zhang Li, Wang Michael Yu(*), A variable-width harmonic probe for multifrequency atomic force microscopy, Applied Physics Letters, 2015, 106(7):071901-1-071901-3.