近年的科研项目、专著与论文、专利、获奖
科研项目:
1. 国家自然科学基金青年基金项目, 51905203, 面向图像传感的超高速自驱动柔性钙钛矿光电探测器可控制备研究, 2020-01至2022-12, 25万元, 在研, 主持
2. 中国博士后科学基金会博士后面上项目(一等), 2018M640691, 超高速自驱动柔性钙钛矿光电探测器设计、制备与应用, 2019-01至2020-12, 8万元, 已结题, 主持
3. 湖北省博士后管委会博士后择优资助(一等), G46, 低成本高稳定性印刷型柔性钙钛矿太阳能电池技术研究, 2019-01至2020-12, 3万元, 已结题, 主持
4. 国家重点研发计划, 2019YFB1503200, 高效稳定大面积钙钛矿太阳电池关键技术及成套技术研发, 2020-01至2023-12, 800万元, 在研, 核心骨干
5. 广东省重点研发计划,2020B090927002,高速直驱高精度数控机床的研发及应用, 2020-01至2023-12, 800万元, 1600万,在研, 核心骨干
6. 国家自然科学基金面上项目, 51675210, 基于钙钛矿的高效微能源器件可控制备研究, 2017-01至2020-12, 63万元, 在研, 核心骨干
7. 深圳市自然科学基金项目,基于钙钛矿薄膜的仿视网膜柔性球面共形图像传感器制备研究, 2020-01至2022-12, 60万, 在研, 核心骨干
8. 深圳市基础研究计划项目,低成本高稳定性印刷型柔性钙钛矿太阳电池技术研究, 2018-01至2019-12,50万,已结题, 核心骨干
荣誉获奖:
1. 华中卓越学者(晨星Ⅱ岗),华中科技大学,2020
2. 2018届暑期“优秀毕业研究生”
3. 华中科技大学2016-2017年度“三好研究生标兵”荣誉称号
4. 2017年博士研究生国家奖学金
5. 2016年博士研究生国家奖学金
6. 华中科技大学2015-2016年度“优秀研究生干部”荣誉称号
7. 华中科技大学2014-2015年度“知行优秀三等奖学金”
发明专利:
1. 廖广兰,刘智勇,史铁林,谭先华,孙博,吴悠妮;一种碳对电极钙钛矿太阳能电池及其制备方法;发明专利;专利授权号:ZL 201510293584.0
2. 廖广兰,刘智勇,史铁林,谭先华,孙博,吴悠妮;一种钙钛矿太阳能电池用导电碳浆、碳对电极、电池及制备方法;发明专利;专利授权号:ZL 201510295741.1
3. 廖广兰,刘智勇,史铁林,谭先华,孙博,吴悠妮;一种柔性钙钛矿太阳能电池的制备工艺;发明专利;专利授权号:ZL 201510162849.3
4. 廖广兰,刘智勇,史铁林,谭先华,孙博,吴悠妮,潜世界;一种钙钛矿太阳能电池与超级电容器集成件及其制备方法;专利授权号:ZL 201610237810.8
代表性论文:
[1] Zhiyong Liu, et al. Novel integration of carbon counter electrode based perovskite solar cell with thermoelectric generator for efficient solar energy conversion. Nano Energy 2017, 38, 457-466. (IF: 15.548, Q1)
[2] Zhiyong Liu, et al. A Cu-doping strategy to enhance photoelectric performance of self-powered hole-conductor-free perovskite photodetector for optical communication applications. Advanced Materials Technologies 2020, 5, 2000260. (IF: 5.969, Q1, Cover paper)
[3] Zhiyong Liu, et al. 15% efficient carbon based planar-heterojunction perovskite solar cells using TiO2/SnO2 bilayer as electron transport layer. Journal of Materials Chemistry A 2018, 6, 7409-7419. (IF: 10.733, Q1, Cover paper)
[4] Zhiyong Liu, et al. Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity. Nanoscale 2016, 8(13): 7017-7023. (IF: 6.970, Q1, Cover paper, Highly cited paper)
[5] Zhiyong Liu, et al. Enhanced photovoltaic performance and stability of carbon counter electrode based perovskite solar cells encapsulated by PDMS. Journal of Materials Chemistry A 2016, 4(27): 10700-10709. (IF: 10.733, Q1)
[6] Zhiyong Liu, et al. Novel integration of perovskite solar cell and supercapacitor based on carbon electrode for hybridizing energy conversion and storage. ACS Applied Materials & Interfaces 2017, 9, 22361-22368. (IF: 8.456, Q1)
[7] Zhiyong Liu, et al. Efficient carbon based CsPbBr3 inorganic perovskite solar Cells by using Cu-phthalocyanine as hole transport material. Nano-Micro Letters 2018, 10(2):34. (IF: 9.043, Q1)
[8] Zhiyong Liu, et al. Fully low-temperature processed carbon-based perovskite solar cells using thermally evaporated cadmium sulfide as efficient electron transport layer, Organic Electronics 2019, 74, 152-160. (IF: 3.495,Q1)
[9] Zhiyong Liu, et al. A large-area hole-conductor-free perovskite solar cell based on a low-temperature carbon counter electrode. Materials Research Bulletin 2017, 96: 196–200. (IF: 3.355, Q2)
[10] Xinyue Liu#, Zhiyong Liu#(共同一作), et al. 17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile TiO2 as electron transport layer, Nano Energy 2018, 50, 201-211. (IF: 15.548, Q1)
[11] Haibo Ye#, Zhiyong Liu#(共同一作), et al. 17.78% efficient low-temperature carbon-based planar perovskite solar cells using Zn-doped SnO2 electron transport layer. Applied Surface Science 2019, 478, 417-425. (IF: 5.155, Q1)